Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a: Xét ΔADB và ΔADC có
AB=AC
AD chung
BD=CD
Do đó: ΔADB=ΔADC
b: Ta có: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
c: Xét ΔADM vuông tại M và ΔADN vuông tại N có
AD chung
\(\widehat{DAM}=\widehat{DAN}\)
Do đó: ΔADM=ΔADN
=>AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
a: Sửa đề: Chứng minh ΔABD=ΔAMD
Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>ΔDBM cân tại D
c: Ta có: DB=DM
=>D nằm trên đường trung trực của BM(1)
ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1),(2) suy ra AD là đường trung trực của BM
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>ΔDBM cân tại D
c: Ta có: AB=AM
=>A nằm trên đường trung trực của BM(1)
ta có: DB=DM
=>D nằm trên đường trung trực của BM(2)
Từ (1) và (2) suy ra AD là đường trung trực của BM
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
b: Xét ΔCAB vuông tại A và ΔCAI vuông tại A có
CA chung
AB=AI
Do đó: ΔCAB=ΔCAI
=>CB=CI
=>ΔCBI cân tại C
c: Ta có; ΔCAB=ΔCAI
=>\(\widehat{ACB}=\widehat{ACI}\)
Xét ΔCMA vuông tại M và ΔCNA vuông tại N có
CA chung
\(\widehat{MCA}=\widehat{NCA}\)
Do đó: ΔCMA=ΔCNA
d: Ta có: ΔCMA=ΔCNA
=>CM=CN
Xét ΔCIB có \(\dfrac{CM}{CI}=\dfrac{CN}{CB}\)
nên MN//IB
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
a: AC=4cm
b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có
AM chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔAMN
Suy ra: MH=MN; AH=AN
hay AM là đường trung trực của NH
c: Xét ΔAHN có AH=AN
nên ΔAHN cân tại A
mà \(\widehat{HAN}=60^0\)
nên ΔAHN đều
a: Ta có: \(\widehat{MAD}=\widehat{BAD}\)(AD là tia phân giác của góc BAC)
\(\widehat{BAD}=\widehat{MDA}\)(hai góc so le trong, AB//DM)
Do đó: \(\widehat{MAD}=\widehat{MDA}\)
=>ΔMAD cân tại M
b: Xét ΔMND và ΔBDN có
\(\widehat{MND}=\widehat{BDN}\)(hai góc so le trong, NM//BD)
ND chung
\(\widehat{MDN}=\widehat{BND}\)(hai góc so le trong, MD//BN)
Do đó: ΔMND=ΔBDN
c: Ta có: ΔMND=ΔBDN
=>MD=BN
mà MD=MA
nên MA=BN