Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khó king khủng em mới học lớp 4 thôi để em ăn cháo sen bát bảo minh trung làm được ngay nhưng phải làm thêm tí bò húc với lại rượu đế ! la la la la la ta là một con người
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔACE(g-g)
a, Xét tg ABD và tg ACE có
góc A chung
góc ADB = góc AEC (=90)
=>tg ABD đồng dạng vs tg ACE (g-g)
b, tg HEB = tg HDC (g-g) (tự cm nha) => HE/HD = HB/HC
=> HE.HC = HB.HD
a) Xét tam giác ABD và tam giác ACE có:
Góc A chung; \(\widehat{ADB}=\widehat{AEC}=90^2\)
\(\Rightarrow\Delta ADB\)đồng dạng \(\Delta ACE\left(gg\right)\)
b) Xét tam giác BHE và tam giác CHD có
\(\hept{\begin{cases}\widehat{BHE}=\widehat{CHD}\left(đ^2\right)\\\widehat{BEH}=\widehat{CDH}=90^o\end{cases}}\)
=> tam giác BHE đồng dạng với tam giác CHD (g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HE}{HD}\Rightarrow BH\cdot HD=CH\cdot HE\)
c) Khi AB=AC=b thì tam giác ABC cân tại A
=> DE//BC => \(\frac{DE}{BC}=\frac{AD}{AC}\)
\(\Rightarrow DE=\frac{AD\cdot BC}{AC}\)
Gọi giao của Ah và BC là F
=> \(AF\perp BC,FB=FC=\frac{a}{2}\)
Tam giác DBC đồng dạng tam giác FAC => \(\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow DC=\frac{BC\cdot FC}{AC}=\frac{a^2}{2b}\)
\(\Rightarrow DE=\frac{AD\cdot BC}{AC}=\frac{\left(AC-DC\right)BC}{AC}=\frac{\left(b-\frac{a^2}{ab}\right)a}{b}=\frac{a\left(2b^2-a^2\right)}{2b^2}\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
c: góc A=90-30=60 độ
ΔADE đồng dạng với ΔABC
=>S ADE/S ABC=(AD/AB)^2=1/4
=>S ABC=120cm2
Mình ghét hình...với lại nó dài nữa! Ai làm cũng mỏi tay bạn à...
a)BD, CE vuông góc với AC,AB
=> H là trực tâm của tam giác ABC
=>AH là đường cao của tam giác ABC
=>AH vuông góc BC
b)ta có:góc EAC=gócDAB
góc ADB=góc AEC=90độ
=>tam giác ABD đồng dạng với tam giác ACE
A) Xét tam giác ABD và tam giác ACE có :
\(\widehat{A}\)chung
\(\widehat{ADB}\)= \(\widehat{AEC}\)( giả thiết)
vậy tam giác ABD đồng dạng với tam giác ACE ( G-G)
B)Theo phần A ta có tam giác ABD đồng dạng với tam giác ACE nên :
\(\frac{AD}{AB}\)=\(\frac{AE}{AC}\)( ĐỊNH LÍ ĐẢO CỦA ta-LÉT)
TỪ ĐIỀU TRÊN SUY RA : tam giác ADE đồng dạng với tam giác ABC
vậy góc ADE = góc ABC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc A chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD~ΔACE
b: Ta có;ΔABD~ΔACE
=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
=>\(\dfrac{2}{AE}=\dfrac{4}{5}\)
=>\(AE=2\cdot\dfrac{5}{4}=2,5\left(cm\right)\)
c:
Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHEB~ΔHDC
=>\(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)
=>\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED~ΔHBC
=>\(\widehat{HDE}=\widehat{HCB}\)