K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Đặt \(P=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Ta có:

\(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\dfrac{\sqrt{2}}{2}\left(a+b\right)\)

Tương tự và cộng lại ta được BĐT bên trái

Dấu "=" xảy ra khi \(a=b=c\)

Bên phải:

Áp dụng BĐT Bunhiacopxki:

\(P^2\le3\left(a^2+b^2+b^2+c^2+c^2+a^2\right)=6\left(a^2+b^2+c^2\right)\)

Mặt khác do a;b;c là 3 cạnh của 1 tam giác:

\(\Rightarrow\left\{{}\begin{matrix}a+b>c\\a+c>b\\b+c>a\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ac+bc>c^2\\ab+bc>b^2\\ab+ac>c^2\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)< 6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2\le3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)\)

\(\Rightarrow P^2< 3\left(a+b+c\right)^2\Rightarrow P< \sqrt{3}\left(a+b+c\right)\)

27 tháng 7 2021

thề luôn bài như vầy mà cả viết lẫn nghĩ có 10phut

 

28 tháng 7 2017

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le6\)

\(\Rightarrow VT^2\le6\Rightarrow VT\le\sqrt{6}=VP\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{a+\sqrt{b+\sqrt{2c}}}+\sqrt{b+\sqrt{c+\sqrt{2a}}}+\sqrt{c+\sqrt{a+\sqrt{2b}}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+Σ\sqrt{b+\sqrt{2c}}\right)\)

\(=3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

Đặt \(A^2=\left(\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)^2\)

\(\le\left(1+1+1\right)\left(a+b+c+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

\(=3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\)

Đặt tiếp: \(B^2=\left(\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)^2\)

\(\le2\cdot\left(1+1+1\right)\left(a+b+c\right)\le36\Rightarrow B\le6\)

\(\Rightarrow A^2\le3\left(6+\sqrt{2a}+\sqrt{2b}+\sqrt{2c}\right)\le3\cdot12=36\Rightarrow A\le6\)

\(\Rightarrow VT^2\le3\left(6+\sqrt{b+\sqrt{2c}+\sqrt{c+\sqrt{2a}}}+\sqrt{a+\sqrt{2b}}\right)\)

\(\le3\left(6+6\right)=3\cdot12=36\Rightarrow VT\le6=VP\)

Xảy ra khi \(a=b=c=2\)

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{2}\left(a+b+c\right)\)(1)

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)(2)

Dễ thấy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)nên  \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)

Tương tự \(b+c\le\sqrt{2\left(b^2+c^2\right)}\)\(a+c\le\sqrt{2\left(a^2+c^2\right)}\)

\(\Rightarrow2\left(a+b+c\right)\le\sqrt{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)

\(\Rightarrow\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)

Do \(a,b,c\)là ba cạnh của một tam giác nên 

\(\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)

Tương tự \(\sqrt{b^2+c^2}< \sqrt{a^2+2bc}\)\(\sqrt{a^2+c^2}< \sqrt{b^2+2ac}\)

Cộng vế theo vế ta được 

\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\)

Áp dụng BĐT \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\), ta có :

\(\sqrt{c^2+2ab}+\sqrt{a^2+2bc}+\sqrt{b^2+2ac}\le\sqrt{3\left(c^2+2ab+c^2+2bc+b^2+2ac\right)}\)

\(=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}\left(a+b+c\right)\)

P/s ko bt có đúng ko 

NV
27 tháng 4 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x^2;y^2;z^2\right)\) với \(x;y;z>0\Rightarrow xyz=1\)

Đặt vế trái của BĐT cần chứng minh là P

Ta có: \(P=\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\)

\(P=\dfrac{1}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}+\dfrac{1}{\left(y^2+z^2\right)+\left(z^2+1\right)+2}+\dfrac{1}{\left(z^2+x^2\right)+\left(x^2+1\right)+2}\)

\(P\le\dfrac{1}{2xy+2y+2}+\dfrac{1}{2yz+2z+2}+\dfrac{1}{2zx+2x+2}\)

\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xyz}{yz+z+xyz}+\dfrac{y}{xyz+xy+y}\right)\)

\(P\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{xy}{y+1+xy}+\dfrac{y}{1+xy+y}\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

9 tháng 12 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)

Vì \(\sqrt{p}>0\) nên ta có điều tương đương \(p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< \left(3p-a-b-c\right)+2\left(\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}\right)\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng BĐT Bunhiacopxki, ta được : \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le3\left(p-a+p-b+p-c\right)\)

\(\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Vậy có đpcm.

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)