K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

Trước hết ta cần chứng minh bổ đề sau (tạm gọi là bổ đề 1): Nếu 2 tam giác mà có chung đường cao tương ứng ( hay 2 đường cao tương ứng bằng nhau) thì tỉ số diện tích của hai tam giác bằng tỉ số cạnh đáy tương ứng.

Hạ đường cao chung AH của hai tam giác ABM và ACM. Ta cần chứng minh \(\frac{S_{ABM}}{S_{ACM}}=\frac{BM}{CM}\)

Thật vậy: \(S_{ABM}=\frac{1}{2}AH.BM\)\(S_{ACM}=\frac{1}{2}AH.CM\)

\(\Rightarrow\frac{S_{ABM}}{S_{ACM}}=\frac{\frac{1}{2}AH.BM}{\frac{1}{2}AH.CM}=\frac{BM}{CM}\)

Như vậy bổ đề được chứng minh.

1 tháng 1 2022

Một sự thật nghiệt ngã đó là muốn MN chia tam giác ABC thành 2 phần có diện tích bằng nhau thì chỉ còn nước M trùng với B mà thôi.

Muốn MN chia tam giác ABC thành 2 phần có dt bằng nhau thì điều hiển nhiên là \(\frac{S_{CMN}}{S_{ABC}}=\frac{1}{2}\)(dt tam giác CMN bằng một nửa dt tam giác ABC)

Giả sử M nằm trên cạnh BC nhưng M không trùng với B, ta sẽ có \(CM< BC\)\(\Leftrightarrow\frac{CM}{BC}< 1\)

Hai tam giác CMN và BCN có chung đường cao hạ từ N nên \(\frac{S_{CMN}}{S_{BCN}}=\frac{CM}{BC}\)(hai tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số hai cạnh đáy tương ứng)

Từ đó ta có \(\frac{S_{CMN}}{S_{BCN}}< 1\)(1)

Mặt khác hai tam giác BCN và ABC có chung đường cao hạ từ B nên \(\frac{S_{BCN}}{S_{ABC}}=\frac{NC}{AC}\)

Do N nằm trên AC sao cho \(NA=NC\)nên \(\frac{NC}{AC}=\frac{1}{2}\)(NC bằng một nửa AC)

Từ đó \(\frac{S_{BCN}}{S_{ABC}}=\frac{1}{2}\)(2)

Nhân vế theo vế của (1) và (2), ta có: \(\frac{S_{CMN}}{S_{BCN}}.\frac{S_{BCN}}{S_{ABC}}< 1.\frac{1}{2}\)\(\Leftrightarrow\frac{S_{CMN}}{S_{ABC}}< \frac{1}{2}\)

Như vậy rõ ràng khi N không trùng với B thì việc MN chia tam giác ABC thành 2 phần có dt bằng nhau là không thể.

Do đó N trùng với B.

5 tháng 3 2017

A C N B K M O

5 tháng 3 2017

lấy K là trung điểm của AC . Nối B với K

Ta có Sabc = Scbk < K là trung điểm của AC > suy ra Sabk = 1/2 Sabc

Từ K kẻ đoạn thẳng song song với NB cắt BC tại M

Trong hình thang NBMK cặp tam giác NOK và BOM có dt bằng nhau

< Snbk = Snbm , Snok = Snbk - Snbo , Sbom = Snbm - Snbo , suy ra Snok = Sbom>

Tứ giác ABNM có : Sabk + Sbom - Snok = Sabk = Sabc

Vậy M chính là điểm cần tim

     tk mk nhé

2 tháng 1 2016

Khi nối lần thứ nhất ta được thêm 4 hình tam giác mới.
Khi nối lần thứ hai mỗi hình tam giác lại tạo thành 4 hình tam giác mới nữa, ...
Sau 3 lần nối như thế thì số tam giác tạo thành là :
1 + 4 + 4 x 4 + 4 x 4 x 4 = 85 (hình tam giác).

Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?Bài 2:   Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi: a) Hình...
Đọc tiếp

Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?

Bài 2:   Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi:

 a) Hình trên có tất cả bao nhiêu hình bình hành?

 b) Tổng chu vi của tất cả hình bình hành trên bằng bao nhiêu?

Bài 3: Cho tam giác ABC, trên AC lấy điểm N sao cho AN = 4/1 AC, trên BC lấy điểm M sao cho BM = MC. Kéo dài AB và MN cắt nhau ở P. a) Tính diện tích tam giác ABC, biết diện tích tam giác APN bằng 100cm2 .

 b) So sánh PN và NM.

Bài 4:  Cho tứ giác ABCD có diện tích 928m2 . Trên AB lấy điểm M. Nối M với C. Từ B kẻ đường thẳng song song với MC gặp DC kéo dài tại E. Nối A với E. Trên AE lấy điểm chính giữa I. Nối I với M, I với D. Tìm diện tích tứ giác AMID.

Bài 5: Cho tam giác ABC, M là điểm trên cạnh BC sao cho BM = 2 x MC. N là điểm trên cạnh AC sao cho CN = 3 x NA. AM cắt BN tại O. Hãy tính diện tích tam giác ABC, nếu biết diện tích tam giác AOB = 20cm2 .

Bài 6:  Cho tam giác ABC, trên cạnh BC lấy điểm D sao cho BD gấp đôi DC. Nối A với D, lấy điểm E bất kì trên cạnh AD. Nối EB và EC. Hãy so sánh diện tích hai tam giác BAE và CAE.

 

1
15 tháng 1 2017

lhtughiuykurkvggvbgtibtigbybjtvdhgggtbh8ohpb gg64gti6hivfjrvjgkyttjgvcfgjufj

28 tháng 3 2016

44 điểm tạo thành

28 tháng 3 2016

55 hoặc 66 , mình đang phân vân