Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Có: ΔABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Có: \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABD}=180^0\\\widehat{ACB}+\widehat{ACE}=180^0\end{matrix}\right.\) (kề bù)
Mà: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\) \(\widehat{ABD}=\widehat{ACE}\)
Ta có: \(\left\{{}\begin{matrix}AB=BD\left(GT\right)\\AC=CE\left(GT\right)\end{matrix}\right.\)
Mà: AB = AC (ΔABC cân tại A)
=> BD = CE
Xét ΔABD và ΔACE ta có:
AB = AC (ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
BD = CE (cmt)
=> ΔABD = ΔACE (c - g - c)
b/ Thiếu đề
c/ Có: AB = BD (GT)
=> ΔABD cân tại B
d/ Có: ΔABD = ΔACE (câu a)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{D}=\widehat{E}\\\widehat{ABD}=\widehat{ACE}\end{matrix}\right.\) (2 góc tương ứng)
Có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{ABE}=180^0\\\widehat{ACE}+\widehat{ACD}=180^0\end{matrix}\right.\) (kề bù)
Mà: \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Có: \(\left\{{}\begin{matrix}BD+BC=DC\\BC+CE=BE\end{matrix}\right.\)
Mà: BD = CE (GT) và BC chung
=> DC = BE
Xét ΔACD và ΔABE ta có:
DC = BE (cmt)
\(\widehat{ABE}=\widehat{ACD}\left(cmt\right)\)
AB = AC (ΔABC cân tại A)
=> ΔACD = ΔABE (c - g - c)
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
\(\widehat{AMB}=\widehat{BMC}\) (2 góc đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ \(\widehat{MAC}=\widehat{D}\) (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
\(\Rightarrow\widehat{ABD}\) = 90 độ
Vì ΔAMC = ΔDMB (câu a)
=> AC = BD
Xét ΔABC và ΔBAD có :
\(\widehat{BAC}=\widehat{ABD}=90^o\left(gt\right)\)
AB là cạnh chung
AC = BD (cmt)
=> ΔABC = ΔBAD (c.g.c)
câu a/
xét tam giác ABH và CAK có:
góc AHB=góc AEC=90;
AB=AC;
góc ABH=góc CAE﴾cùng phụ với góc BAE﴿
=> tam giác ABH=CAK﴾cạnh huyền‐ góc nhọn﴿
=>BH=AK c
âu b/ tam giác ABC vuông cân
; M là trung điểm của BC
=>AM=BM=CM
xét tam giác BMH và AMK
có góc MBH=MAK﴾cùng phụ với góc BEH﴿
; BH=AK﴾cmt﴿; BM=AM﴾cmt﴿
=>tam giác bằng nhau
Câu c/
theo câu b/
=> MH=MK﴾2 cạnh tương ứng﴿﴾1﴿
Xét tam giác AHM và CEM có
AH=CE﴾tam giác ABH=CEK﴿;
MH=MK﴾cmt﴿;
AM=MC﴾cmt﴿
=> tam giác bằng nhau
=>góc AMH= góc CMK mà góc AMH+góc EMH=90
=>góc HME+gócCMK=90 =>góc HMK=90﴾2﴿
từ ﴾1﴿﴾2﴿
=> tam giác MHK vuông cân