K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEB và ΔADC có

AE=AD

góc BAE chung

AB=AC

=>ΔAEB=ΔADC

=>BE=CD

b: ΔAEB=ΔADC

=>góc ABE=góc ACD

góc ABE+góc EBC=góc ABC

góc ACD+góc DCB=góc ACB

mà góc ABE=góc ACD

và góc ABC=góc ACB

nên góc EBC=góc DCB

=>góc IBC=góc ICB

=>IB=IC

c: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

d: ID+IC=CD

IE+IB=EB

mà IC=IB và CD=EB

nên ID=IE

mà AD=AE

nên AI là trung trực của DE

=>AI vuông góc DE

14 tháng 3 2015

bai tinh chat tia phan giac cua mot goc

 

1) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)(1)

\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)

Vậy: \(\widehat{B}=65^0\)\(\widehat{C}=65^0\)

2) Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

3) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(gt)

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(cmt)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

4) Ta có: ΔDBC=ΔECB(cmt)

nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{OED}\)(hai góc so le trong, DE//BC)

và \(\widehat{OCB}=\widehat{ODE}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ODE}=\widehat{OED}\)

Xét ΔODE có \(\widehat{ODE}=\widehat{OED}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

20 tháng 1 2021
16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AB = AC; AD = AE => DB = EC

Ta có: \(\Delta\)EDC và \(\Delta\)DCB có:

DC: cạnh chung

DB = EC (cmt)

B = C (gt)

=> \(\Delta\)EDC = \(\Delta\)DCB (c.g.c)

=> EDC = DCB (2 góc tương ứng)

EDC và DCB là 2 góc ở vị trí so le trong => DE // BC

25 tháng 4 2018

a) 

Xét  tam giác ADC  và tam giác AEB  có :

AD = AE (GT)

Góc A chung

AC = AB ( vì tam giác ABC cân )

từ 3 điều trên => tam giác ADC = tam giác  AEB  (c-g-c )

=> DC= BE ( cặp cạnh tương ứng )

b) vì tam giác ADC  = tan giác AEB ( câu a )

=> góc ABE = góc ACD ( cặp góc tương ứng )

ta có : tam giác ABC  cân => AB = AC   (1)

                                               và AD = AE (GT )  (2)

từ (1) và (2) => BD = CE 

Xét tam giác KBD  và tam giác KCE Có :

góc DKB = góc EKC ( 2 góc đối đỉnh )

BD = CE  ( chứng minh trên )

Góc DKB = góc EKC  ( đối đỉnh )

từ 3 điều trên => tam giác KBD  = tam giác  KCE ( g-c-g )

25 tháng 4 2018

bạn bit câu c, d ko

7 tháng 6 2019