Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(AD=AE\left(gt\right)\)
→ ΔADE là tam giác cân ở A
\(\Rightarrow\widehat{ADE}=\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40}{2}=70^0\)
Mà ΔABC cũng là tam giác cân
\(\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}=70^0\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(=70^0\right)\)
mà 2 góc này ở vị trí so le trong
\(\Rightarrow DE//BC\)
b, Xét ΔABE và ΔACD có :
\(AB=AC\left(\Delta ABC\cdot cân\right)\)
\(\widehat{A}:chung\)
\(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c-g-c\right)\)
c, Nối dài đoạn AI xuống BC, ta được đường phân giác AK của tam giác ABC.
Mà ΔABC cân ở A
→ AK là đường trung tuyến của tam giác ABC
→ AI cũng là đường trung tuyến của tam giác ABC
Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.
a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)
Mà ^ABC = ^ACB ( tam giác ABC cân tại A)
=> ^ABC = ^BFD
Vậy tam giác FBD cân tại D (đpcm)
b) Kẻ \(DM\perp BC;EN\perp BC\)
Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)
=> MD = NE (hai cạnh tương ứng)
=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)
=> DI = EI hay I là trung điểm của DE (đpcm)
c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)
=> đpcm...
Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.
a, Xét tam giác ABE và tam giác ACD
AB = AC
AE = AD
^A _ chung
Vậy tam giác ABE = tam giác ACD (c.g.c)
=> BE = CD ( 2 cạnh tương ứng )
=> ^ABE = ^ACD ( 2 góc tương ứng )
b, Ta có BD = AB - AD ; EC = AC - AE => BD = EC
Xét tam giác KBD và tam giác KCE có
^BKD = ^CKE ( đối đỉnh )
^KBD = ^KCE (cmt)
BD = CE (cmt)
Vậy tam giác KBD = tam giác KCE (g.c.g)
c, Xét tam giác ABH và tam giác ACH có
^B = ^C
AH _ chung
AB = AC
Vậy tam giác ABH = tam giác ACH ( c.g.c )
=> ^BAH = ^CAH ( 2 góc tương ứng )
=> AH là đường phân giác
hay AK là đường phân giác
d, Xét tam giác ABC cân tại A có AK là phân giác đồng thời là đường cao
hay AK vuông BC
e, Ta có AD/AB = AE/AC => DE//BC (Ta lét đảo)
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
=>ΔADC=ΔAEB
b: AD+DB=AB
AE+EC=AC
mà AB=AC và AD=AE
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
góc DBC=góc ECB
BC chung
=>ΔDBC=ΔECB
=>góc KBC=góc KCB
=>ΔKBC cân tại K
a)
Xét tam giác ADC và tam giác AEB có :
AD = AE (GT)
Góc A chung
AC = AB ( vì tam giác ABC cân )
từ 3 điều trên => tam giác ADC = tam giác AEB (c-g-c )
=> DC= BE ( cặp cạnh tương ứng )
b) vì tam giác ADC = tan giác AEB ( câu a )
=> góc ABE = góc ACD ( cặp góc tương ứng )
ta có : tam giác ABC cân => AB = AC (1)
và AD = AE (GT ) (2)
từ (1) và (2) => BD = CE
Xét tam giác KBD và tam giác KCE Có :
góc DKB = góc EKC ( 2 góc đối đỉnh )
BD = CE ( chứng minh trên )
Góc DKB = góc EKC ( đối đỉnh )
từ 3 điều trên => tam giác KBD = tam giác KCE ( g-c-g )
a. Ta có: AD + DB = AB; AE + EC = AC mà AB = AC; AD = AE => DB = EC
Ta có: \(\Delta\)EDC và \(\Delta\)DCB có:
DC: cạnh chung
DB = EC (cmt)
B = C (gt)
=> \(\Delta\)EDC = \(\Delta\)DCB (c.g.c)
=> EDC = DCB (2 góc tương ứng)
EDC và DCB là 2 góc ở vị trí so le trong => DE // BC