Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR:
+Xét tg vuông BKH và tg CHB ta có
Cạnh huyền BC chung (1)
\(^SABC=\frac{AB.CK}{2}=\frac{AC.BH}{2}\Rightarrow AB=AC\Rightarrow BH=CK\)
Từ (2) với (2) => tg = BKC tg= CHB (cạnh huyền và cạnh góc vuông tương ứng bằng nhau) BK = CH
Mà AB cân tại A AC=AK+BK=AH+CH=AK+CK=>tg AHK cân tại A
+Xét tg cân AKH có
^AKH =^AHK=(180^-BAC)(2)(3)
^ABC=(180-BAC)
Từ (3) (4) vậy
Có hai góc đồnng vị
Nên BKHC là hình thang vuông
a)Tam giác KBC=tam giácHCB(cạnh huyền góc nhọn)
=>BH=CK ; BK=CH
Mà AB=AC=>AK=KH=>Tam giác AKH cân tại A
=>Góc AKH=Góc KBC mà 2 góc đồng vị
=>KH//BC=>KHCB là hình thang,có BH=CK
=>KHCB là hình thang cân
b)Tứ giác KIBM có:KH=BM ; KH//BM
=>KHBM là hình bình hành
=>KB=HM
Mà HC=KB
=>HC=MH=> Tam giác HMC cân tại H
c)Để A,O,M thẳng hàng thì tam giác ABC phải là tam giác đều (bạn tự chứng minh nha)
Chúc bạn học tốt!!
a) Ta có \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Do BD là phân giác \(\widehat{ABC}\)\(\Rightarrow\widehat{ABD}=\widehat{DBC}\)
CE là phân giác \(\widehat{ACB}\)\(\Rightarrow\widehat{ACE}=\widehat{ECB}\)
Mà \(\Delta ABC\)cân \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét \(\Delta ABD=\Delta ACE\left(g-c-g\right)\)( tự xét nha :)))
\(\Rightarrow AD=AE\)\(\Rightarrow\Delta AED\)cân tại A
\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà hai góc đó ở vị trí đồng vị
\(\Rightarrow ED//BC\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra : BEDC là hình thang cân (3)
Ta có : \(ED//BC\Rightarrow\widehat{EDB}=\widehat{DBC}\)( so le trong )
Mà \(\widehat{EBD}=\widehat{DBC}\)
Suy ra \(\widehat{EDB}=\widehat{EBD}\)\(\Rightarrow\Delta BED\)cân tại E
\(\Rightarrow EB=ED\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)BEDC là hình thang cân có cạnh bên bằng đáy nhỏ -_-
b) Xét \(\Delta ABH=\Delta ACK\left(ch-gn\right)\)( tự xét )
\(\Rightarrow AK=AH\)\(\Rightarrow\Delta AKH\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^o-\widehat{BAC}}{2}\left(5\right)\)
Từ (1) và (5) \(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
Mà hai góc trên ở vị trí đồng vị
Suy ra : KH // BC
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra : BKHC là hình thang cân
c) Do BM là trung tuyến \(\Rightarrow AM=\frac{1}{2}AC\)
CN là trung tuyến \(\Rightarrow AN=\frac{1}{2}AB\)
Mà AB = AC \(\Rightarrow AN=AM\)
\(\Rightarrow\Delta AMN\)cân tại A \(\Rightarrow\widehat{ANM}=\frac{180^o-\widehat{BAC}}{2}\left(6\right)\)
Từ (1) và (6) \(\Rightarrow\widehat{ANM}=\widehat{ABC}\)
Mà hai góc trên ở vị trí đồng vị
\(\Rightarrow MN//BC\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\)
Suy ra BNMC là hình thang cân
Vậy ...
CHO TAM GIÁC ABC CÂN TẠI A
A/ĐƯỜNG PHÂN GIÁC BD,EC (D ∈ AC ,E ∈ AB).CMR TỨ GIÁC BEDC LÀ HÌNH THANG CÂN CÓ CẠNH BÊN BẰNG ĐÁY NHỎ
B/ĐƯỜNG CAO BH,CK (H ∈ AC, K ∈ AB).CMR: BKHC LÀ HÌNH THANG CÂN
C/ĐƯỜNG TRUNG TUYẾN BM ,CN (M ∈ AC, N ∈ AB). CMR :BNCM LÀ HÌNH THANG CÂN
GIÚP VS BẠN ƠI
Chứng minh DBKC = DCHB (ch-gnh)
Suy ra CK = BH & AK = AH
A K H ^ = 180 0 − K A H ^ 2 = A B C ^ h a y K H / / B C .
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà BH=CK
nên BKHC là hình thang cân
Hình tự vẽ nha.
Lời giải:
+ Xét\(\Delta AHB\)và\(\Delta AKC\)có:
\(\widehat{AHB}=\widehat{AKC}=90^0\)
\(AB=AC\)(Do\(\Delta ABC\)cân tại A)
\(\widehat{HAB}=\widehat{KAC}\)
Do đó:\(\Delta AHB=\Delta AKC\)(g-c-g)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)
Mà\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Do\(\Delta ABC\)cân tại A)
\(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
\(\Rightarrow HK//BC\)
+Xét tứ giác BCKH có\(HK//BC\)
=> BCHK là hình thang
Mà\(\widehat{B}=\widehat{C}\)(Do\(\Delta ABC\)cân tại A)
=> BCHK là hình thang cân (đpcm)
Vậy BCHK là hình thang cân
Bài 6:
Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BAC}=\widehat{ACD}\)
nên \(\widehat{ACB}=\widehat{ACD}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
+ Xét hai tam giác vuông ABH và ACK có
^BAC chung
AB=AC (tam giác ABC cân tại A)
^ABH=^ACK (cùng phụ với ^ABC)
=> Tam giác ABH=tam giác ACK (g.c.g) => BH=CK
+ Ta có AI là đường cao của t/g ABC (trong 1 tam giác 3 đường cao đồng quy)
=> AI là phân giác ^BAC (Trong tam giác cân đường cao đồng thời là đường phân giác của góc ở đỉnh)
+ Do t/g ABH=t/g ACK => AK=AH mà AB=AC=AK+BK=AH+CH => BK=CH (*)
Do AK=AH => Tam giác AKH cân tại A => ^AKH=^AHK=(180-^BAC):2 (1)
Ta có ^ABC=^ACB=(180-^BAC):2 (2)
=> Từ (1) và (2) ^ABC=^AKH => BC//KH (Hai góc đồng vị băng nhau) (**)
=> Từ (8) và (**) => Tứ giác BKHC là hình thang cân