K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác EAFH có 

\(\widehat{AFH}=90^0\)

\(\widehat{FAE}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)

\(\widehat{ICA}=90^0-\widehat{B}\)

mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)

nên \(\widehat{IAC}=\widehat{ICA}\)

mà \(\widehat{IBA}=90^0-\widehat{ICA}\)

và \(\widehat{IAB}=90^0-\widehat{IAC}\)

nên \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)

nên ΔIAC cân tại I(Định lí đảo của tam giác cân)

Ta có: IA=IB(ΔIAB cân tại I)

IA=IC(ΔIAC cân tại I)

Do đó: IB=IC

mà I nằm giữa B và C

nên I là trung điểm của BC(Đpcm)

9 tháng 7 2021

cho mik xin hình vs ạ hihi

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

20 tháng 12 2020

undefined

9 tháng 1 2021

sai rồi

18 tháng 11 2023

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

AM\(\perp\)DE

=>\(\widehat{AED}+\widehat{MAC}=90^0\)

mà \(\widehat{AED}=\widehat{AHD}\left(cmt\right)\) 

và \(\widehat{AHD}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{ABH}+\widehat{MAC}=90^0\)

mà \(\widehat{ABH}+\widehat{MCA}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MAC}=\widehat{MCA}\)

=>MA=MC

\(\widehat{MAC}+\widehat{MAB}=\widehat{BAC}=90^0\)

\(\widehat{MCA}+\widehat{MBA}=90^0\)(ΔABC vuông tại A)

mà \(\widehat{MAC}=\widehat{MCA}\)

nên \(\widehat{MAB}=\widehat{MBA}\)

=>MA=MB

mà MA=MC

nên MB=MC

=>M là trung điểm của BC

( Hình em tự vẽ nhé! )

Lấy O là giao điểm DE và HA

+ Xét tứ giác ADHE có:

\(\widehat{HDA}=\widehat{DAE}=\widehat{AEH}=90^o\)

=> ADHE là hình chữ nhật

=> O là trung điểm AH (t/c)

     O là trung điểm DE (t/c)

=> OA = OH = OD = OE 

=> ΔAOE cân tại O

=> \(\widehat{OAE}=\widehat{OEA}\left(tc\right)\)

+ Xét ΔABH vuông tại H

=> \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{BAH}+\widehat{CAH}=90^o\)

=> \(\widehat{ABH}=\widehat{CAH}\)

Mà \(\widehat{CAH}=\widehat{OEH}\)

\(\widehat{ABH}=\widehat{AEO}\)

+ Xét ΔADE và ΔACB có:

\(\widehat{DAE}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{AED}=\widehat{ABC}\)

=> ΔADE \(\sim\) ΔACB (g.g)

=> \(\widehat{ADE}=\widehat{ACB}\left(2gtu\right)\)

Lấy I là giao điểm AM và DE 

+ Xét ΔAIE vuông tại I 

=> \(\widehat{IAE}+\widehat{IEA}=90^o\)

Mà \(\widehat{BAM}+\widehat{MAC}=90^o\)

=> \(\widehat{IEA}=\widehat{MAB}\)

Mà \(\widehat{IEA}=\widehat{ABC}\)

=> \(\widehat{ABC}=\widehat{BAM}\)

=> ΔABM cân tại M

=> MA = MB (t/c)

+ Xét ΔAID vuông tại I

=> \(\widehat{IDA}+\widehat{IAD}=90^o\)

Mà \(\widehat{IAD}+\widehat{MAC}=90^o\)

=> \(\widehat{IDA}=\widehat{MAC}\)

Mà \(\widehat{IDA}=\widehat{ACM}\)

=> \(\widehat{MAC}=\widehat{ACM}\)

=> ΔMAC cân tại M

=> MA = MC (t/c)

Mà MA = MB 

=> MB = MC

=> M là trung điểm BC.

a: Xét tứ giác EAFH có 

\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)

Do đó: EAFH là hình chữ nhật

26 tháng 9 2021

undefined