Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Bài giải
a, Ta có : Tổng 3 trong một tam giác bằng 1800
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)
\(\Rightarrow\widehat{A}=80^0\)
Mặt khác : tia phân giác của góc A cắt ABC tại D
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)
Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)
\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)
\(\Rightarrow\widehat{ADC}=110^0\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (tổng ba góc của một tam giác)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-80^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^0\)
Theo đề bài: \(\widehat{B}=3\widehat{C}\)
\(\Rightarrow3\widehat{C}+\widehat{C}=100^0\)
\(\Rightarrow4\widehat{C}=100^0\)
\(\Rightarrow\widehat{C}=25^0\)
\(\Rightarrow\widehat{B}=3\widehat{C}=3.25^0=75^0\)
Vậy \(\widehat{B}=75^0;\widehat{C}=25^0\)
\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)
Ta có
góc ADC=góc DAB+ góc B (theo tính chất góc ngoài của tam giác)
góc ADB= góc DAC + góc C
=> góc ADC- góc ADB=góc B+ góc DAB-(góc C+ góc DAC)
Vì AD là tia phân giác của góc A
=> góc DAB= góc DAC
=>góc ADC- góc ADB=gocsB-góc C=40 độ
mà góc ADC và góc ADB là 2 góc kề bù
=> góc ADC+góc ADB=180 độ
=> góc ADC=(180 độ +40 độ):2=110 độ
KL
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)