Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BCDE có
A là trung điểm của EC
A là trung điểm của BD
Do đó: BCDE là hình bình hành
mà \(\widehat{EDC}=90^0\)
nên BCDE là hình chữ nhật
Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
Còn phần còn lại bạn tự làm
Đó sẽ là hình thang cân DECB.
Trong bài tập này có 2 điều bạn phải làm rõ được:
DE // BC và DC = BE.
Chúng ta sẽ cùng làm từng điều một:
- DE // BC:
Giả thiết cho tam giác ABC cân A => AC = AB.
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc
=> góc ADE = ACB => DE // BC.
học tốt nhé cậu
Đề bài bị sai
Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.
Bài giải:
a) \(\Delta\)ABC đều
=> ^BAC = 60 độ
mà ^ EAD = ^BAC ( đối đỉnh)
=> ^EAD = 60 độ
Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD
=> \(\Delta\)EAD đều
=> ^EDA = ^ABC (= 60 độ ) mà hai góc này ở vị trí so le trong
=> ED//BC (1)
Xét \(\Delta\) EAB và \(\Delta\)DAC có:
AE = AD ;
^ EAB = ^DAC ( đối đỉnh)
AB = AC
=> \(\Delta\)EAB = \(\Delta\)DAC
=> ^BEA = ^CDA
mà ^ AED = ^ ADE ( \(\Delta\)AED đều )
=> ^ BEA + ^AED = ^CDA + ^DAC
=> ^BED = ^CDA (2)
Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.
b) ED // BC ( theo 1)
=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)
=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)
=> EN//CQ
=> CNEQ là hình thang.
(Bạn thông cảm nha. Mình vẽ hình không đẹp lắm)
Ta có \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A) (1)
và AD = AE (gt)
nên \(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2)
=> \(\widehat{ABC}=\widehat{AED}\)ở vị trí đồng vị (3)
=> BC // ED
nên tứ giác DEBC là hình thang (*)
Chứng minh tương tự, ta cũng có: \(\widehat{ACB}=\widehat{ADE}\)(4)
và \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A) (5)
Từ (3), (4) và (5) => \(\widehat{AED}=\widehat{ADE}\)(**)
Từ (*) và (**)
=> Tứ giác DEBC là hình thang cân
a: Xét ΔABC và ΔADE có
\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)
\(\widehat{BAC}=\widehat{DAE}\)
Do đó: ΔABC\(\sim\)ΔADE
Suy ra: \(\widehat{ABC}=\widehat{ADE}\)
( Hình tự vẽ nha )
Ta có : AB = AE ( gt )
AD = AC ( gt )
Do đó : AB + AD = AC + AE
=> BD = EC
=> Tứ giác BDEC là hình thang ( vì trong hình thang có hai đường chéo bàng nhau )
Ta có:
Tam giác ABC cân tại A => ˆABC=ˆACB=(1800−ˆBAC):2ABC^=ACB^=(1800−BAC^):2
AD=AE => tam giác ADE cân tại A => ˆADE=ˆAED=(1800−ˆDAE):2ADE^=AED^=(1800−DAE^):2
Mà ˆBAC=ˆDAEBAC^=DAE^ (đối đỉnh)
=> ˆABC=ˆACB=ˆADE=ˆAEDABC^=ACB^=ADE^=AED^
=> ˆABC=ˆAEDABC^=AED^
=> DE//BC
=> DECB là hình thang. (1)
Xét tam giác ADB và tam giác AEC có:
AD=AE (gt)
ˆDAB=ˆEACDAB^=EAC^ (đối đỉnh)
AB=AC (gt)
=> tg ADB=tg AEC (c.g.c)
=> ˆDBA=ˆECADBA^=ECA^
Ta có: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ˆDBA+ˆABC=ˆDBCˆECA+ˆACB=ˆECBˆABC=ˆACB(tg.ABC.cân.tại.A)ˆDBA=ˆECA(cmt){DBA^+ABC^=DBC^ECA^+ACB^=ECB^ABC^=ACB^(tg.ABC.cân.tại.A)DBA^=ECA^(cmt)
=> ˆDBC=ˆECBDBC^=ECB^. (2)
Từ (1),(2) => DECB là hình thang cân.
Từ giác BCDE là hình thang cân