K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

Tam giác ABC cân tại A => ABC^=ACB^=(1800−BAC^):2

AD=AE => tam giác ADE cân tại A => ADE^=AED^=(1800−DAE^):2

Mà BAC^=DAE^ (đối đỉnh)

=> ABC^=ACB^=ADE^=AED^

=> ABC^=AED^

=> DE//BC

=> DECB là hình thang. (1)

Xét tam giác ADB và tam giác AEC có:

AD=AE (gt)

DAB^=EAC^ (đối đỉnh)

AB=AC (gt)

=> tg ADB=tg AEC (c.g.c)

=> DBA^=ECA^

Ta có: {DBA^+ABC^=DBC^ECA^+ACB^=ECB^ABC^=ACB^(tg.ABC.cân.tại.A)DBA^=ECA^(cmt)

=> DBC^=ECB^. (2)

Từ (1),(2) => DECB là hình thang cân.

9 tháng 9 2021

Từ giác BCDE là hình thang cânundefined

16 tháng 11 2021

Xét tứ giác BCDE có 

A là trung điểm của EC

A là trung điểm của BD

Do đó: BCDE là hình bình hành

mà \(\widehat{EDC}=90^0\)

nên BCDE là hình chữ nhật

8 tháng 10 2022

Ủa sao góc D bằng 90° vậy

15 tháng 6 2017

Đó sẽ là hình thang cân DECB. 
Trong bài tập này có 2 điều bạn phải làm rõ được: 
DE // BC và DC = BE. 
Chúng ta sẽ cùng làm từng điều một: 
- DE // BC: 
Giả thiết cho tam giác ABC cân A => AC = AB. 
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc 
=> góc ADE = ACB => DE // BC. 
Còn phần còn lại bạn tự làm

Đó sẽ là hình thang cân DECB. 
Trong bài tập này có 2 điều bạn phải làm rõ được: 
DE // BC và DC = BE. 
Chúng ta sẽ cùng làm từng điều một: 
- DE // BC: 
Giả thiết cho tam giác ABC cân A => AC = AB. 
- Xét 2 tam giác ADE và ACB bằng nhau theo trường hợp cgc 
=> góc ADE = ACB => DE // BC. 

học tốt nhé cậu

15 tháng 6 2019

chép từ người khác à

30 tháng 9 2019
Giúp mik với mik cần thank
30 tháng 9 2019

Đề bài bị sai

Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.

Bài giải:

A B C D E N M Q P

a) \(\Delta\)ABC đều

=> ^BAC = 60 độ 

mà ^ EAD = ^BAC ( đối đỉnh)

=> ^EAD = 60 độ 

Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD 

=> \(\Delta\)EAD đều

=> ^EDA  = ^ABC (= 60 độ )  mà hai góc này ở vị trí so le trong 

=> ED//BC  (1)

Xét \(\Delta\) EAB và \(\Delta\)DAC có:

AE = AD ;

^ EAB = ^DAC ( đối đỉnh)

AB = AC

=> \(\Delta\)EAB = \(\Delta\)DAC

=> ^BEA = ^CDA 

mà ^ AED = ^ ADE ( \(\Delta\)AED đều )

=> ^ BEA + ^AED = ^CDA + ^DAC 

=> ^BED = ^CDA  (2)

Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.

b) ED // BC ( theo 1)

=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)

=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)

=> EN//CQ

=> CNEQ là hình thang.

22 tháng 8 2018

hình thang cân

22 tháng 8 2018

B C A D E

(Bạn thông cảm nha. Mình vẽ hình không đẹp lắm)

Ta có \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(\(\Delta ABC\)cân tại A) (1)

và AD = AE (gt)

nên \(\Delta ADE\)cân tại A

=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2)

=> \(\widehat{ABC}=\widehat{AED}\)ở vị trí đồng vị (3)

=> BC // ED

nên tứ giác DEBC là hình thang (*)

Chứng minh tương tự, ta cũng có: \(\widehat{ACB}=\widehat{ADE}\)(4)

và \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A) (5)

Từ (3), (4) và (5) => \(\widehat{AED}=\widehat{ADE}\)(**)

Từ (*) và (**)

=> Tứ giác DEBC là hình thang cân

10 tháng 10 2021

a: Xét ΔABC và ΔADE có 

\(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)

\(\widehat{BAC}=\widehat{DAE}\)

Do đó: ΔABC\(\sim\)ΔADE

Suy ra: \(\widehat{ABC}=\widehat{ADE}\)

 

10 tháng 10 2021

Em củmon ạ

14 tháng 8 2019

Hình tự vẽ nha )

Ta có : AB = AE ( gt ) 

            AD = AC ( gt ) 

Do đó : AB + AD = AC + AE

        => BD = EC 

        => Tứ giác BDEC là hình thang ( vì trong hình thang có hai đường chéo bàng nhau )