Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Do \(\Delta ABC\) cân\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{DBC}+\widehat{ABC}=\widehat{DCB}+\widehat{ACB}=90^o\Rightarrow\widehat{DBC}=\widehat{DCB}\Rightarrow\Delta BDC\) cân tại D
b/
Ta có \(\Delta BDC\) cân nên\(BD=CD\)
\(\Delta ABC\) cân nên \(AB=AC\)
\(\Rightarrow\Delta ABD=\Delta ACD\) (Hai tg vuông có các cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{BAD}=\widehat{CAD};\widehat{BDA}=\widehat{CDA}\) => AD là phân giác của \(\widehat{A}\) và \(\widehat{D}\)
c/
Do tg ABC cân tại A và AD là phân giác \(\widehat{A}\) nên AD là đường cao đồng thời là đường trung tuyến thuộc cạnh BC của tg ABC (Trong tg cân đường phân giác đồng thời là đường cao, đường trung tuyến và đường trung trực)
\(\Rightarrow AD\perp BC\) và đi qua trung điểm của BC
Xét hai tam giác vuông ABD và ACD, ta có:
∠(ABD) =∠(ACD) =90o
Cạnh huyền AD chung
AB = AC (giả thiết)
⇒ ΔABD= ΔACD (cạnh huyền, cạnh góc vuông)
Suy ra: ∠(A1 ) =∠(A2) (hai góc tương ứng)
Suy ra AD là tia phân giác góc A
Xét tam giác ADB và tam giac ADC có :
AD chung
Góc ABD=góc ACD=90 0
AB=AC(2 tam giác cân tại a)
=>tam giác ADB=tam giác ADC (ch-cgv)
=>góc BAD = góc CAD (góc tương ứng)
Vậy AD là tia phân giác góc A
Duyệt nha
Xét tam giác ADB và tam giác ADC có:
AD chung
góc ABD=góc ACD=90 độ
AB=AC(tam giác ABC cân tại A)
=> tam giác ADB=tam giác ADC(ch-cgv)
=> góc BAD=góc CAD(góc tương ứng)
Vậy AD là tia phân giác góc A
tik cho mk nha các bn
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó; ΔABD=ΔACD
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD