Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Tam giác ABC cân tại A => AB=AC=15
Tia p/g BM
=> Theo tính chất đương p/g ta có
AMAB=MCBCAMAB=MCBC
MC=AC-AM
=>AMAB=AC−AMBCAMAB=AC−AMBC
AM15=15−AM10AM15=15−AM10
=> AM= 9
=> MC=AC-AM=15-9=6
BM vuông góc BN
=> BM là tia p/g góc ngoài tại B
=>NCNA=BCBANCNA=BCBA
=> NC.BA=BC.NA
NC.BA-BC.NA=0
NC.BA-BC(AC+CN)= 0
=> NC.15-10(15+CN)=0
=> NC=30
a: Xét ΔABC có BM là phân giác
nên AM/AB=CM/BC
=>AM/15=CM/10
=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3
=>AM=9cm; CM=6cm
b: BM vuông góc BN
=>BN là phân giác góc ngoài tại B
=>NC/NA=BC/BA
=>NC/(NC+15)=10/15=2/3
=>3NC=2NC+30
=>NC=30cm
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)
b, Ta có BD là pg, mà BD vuông BE
nên BE là pg ngoài tam giác ABC
\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
a: AC=AB=15cm
MC=15-9=6cm
Xét ΔBACcó BM là phân giác
nên AM/AB=MC/BC
=>6/BC=9/15=3/5
=>BC=10cm
b: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
=>ΔABM=ΔACN
=>AM=AN
Xét ΔABC có AN/AB=AM/AC
nên MN//BC
c: Xét ΔABC cóMN//BC
nên AM/AC=MN/BC
=>MN/10=9/15=3/5
=>MN=6cm
a: Xét ΔABM và ΔACN có
\(\widehat{ABM}=\widehat{ACN}\)
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN=9cm và AB=AC=15cm
Xét ΔABC có BM là phân giác
nên AM/MC=AB/BC
=>15/BC=9/6=3/2
=>BC=10cm
b: Xét ΔABC có AM/AC=AN/AB
nên MN//BC
c: Xét ΔABC có MN//BC
nên AM/AC=MN/BC
=>MN/10=9/15=3/5
=>MN=6(cm)
a: Xét ΔABC có BM là phân giác
nên AM/AB=CM/BC
=>AM/15=CM/10
=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3
=>AM=9cm; CM=6cm
b: BM vuông góc BN
=>BN là phân giác góc ngoài tại B
=>NC/NA=BC/BA
=>NC/(NC+15)=10/15=2/3
=>3NC=2NC+30
=>NC=30cm