Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))
\(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{CBD}=\widehat{ACE}=\widehat{BCE}\)
Xét ΔABD và ΔACE có
\(\widehat{BAD}\) chung
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
Do đó: ΔABD=ΔACE(g-c-g)
Suy ra: BD=CE(hai cạnh tương ứng)
2) Ta có: EK⊥BC(gt)
DH⊥BC(gt)
Do đó: EK//DH(Định lí 1 từ vuông góc tới song song)
Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Ta có: AE+EB=AB(E nằm giữa A và B)
AD+DC=AC(D nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AE=AD(cmt)
nên EB=DC
Xét ΔEKB vuông tại K và ΔDHC vuông tại H có
EB=DC(cmt)
\(\widehat{EBK}=\widehat{DCH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEKB=ΔDHC(cạnh huyền-góc nhọn)
Suy ra: EK=DH(hai cạnh tương ứng)
a. Chứng minh BD=CE
Xét tam giác vuông AEC và tam giác vuông ADB, có:
AC=AB (tam giác ABC cân tại A)
Góc A chung
Do đó: tam giác AEC=tam giác ADB (ch-gn)
Nên, BD=CE (hai cạnh tương ứng)
b. Chứng minh DH//EK và DH=EK
Ta có:
EK vuông góc với BC (gt)
DH vuông góc với BC (gt)
Suy ra: EK // DH
Ta lại có:
AB=AE+EB
AC=AD+DC
Mà AB=AC (tam giác ABC cân tại A) và AE=AD (tam giác AEC=tam giác ADB)
Do đó: EB=DC
Xét tam giác vuông EKB và tam giác vuông DHC, có
EB=DC (cmt)
Góc EBK = góc DCH (tam giác cân ABC)
Do đó: tam giác EKB = tam giác DHC (ch-gn)
Nên: EK=DH
a) Xét tam giác ABC ta có AB = AC
=> Tam giác ABC cân tại A
=> \(\widehat{ABC}\)= \(\widehat{ACB}\)
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\)
=> \(\widehat{ABD}=\widehat{DBC}=\widehat{ACE}=\widehat{ECB}\)
Xét tam giác ACE và tam giác ABD, ta có:
\(\widehat{A}\) chung
AC = AB (gt)
\(\widehat{ACE}=\widehat{ABD}\)
=> Tam giác ACE = tam giác ABD (g.c.g)
=> BD = CE
b) Ta có: \(\hept{\begin{cases}DH⊥BC\\EK⊥BC\end{cases}}\)
=> DH // EK
Xét tam giác DHB vuông tại H và
tam giác EKC vuông tại K, ta có:
BD = CE (cmt)
\(\widehat{DBH}\)(hay \(\widehat{DBC}\)) = \(\widehat{ECK}\)(hay \(\widehat{ECB}\)) (cmt)
=> Tam giác DHB = tam giác EKC (ch.gn)
=> DH = EK
Còn câu c mình không biết
a)Tam giác ABC có AB=AC suy ra tam giác ABC cân tại A suy ra góc B = C
Mà BD là tia phân giác của góc B ; CE là tia phân giác của góc C
suy ra góc ABD = CBD =BCE =ACE
Xét tam giác ABD và ACE có :
góc ABD =góc ACE (cmt )
AB = AC (gt)
Chung gócA
suy ra tam giác ABD = ACE (g.c.g )
suy ra BD = CE ( 2 cạnh tương ứng )
b) Ta có DH vuông góc với BC ; EK vuông góc với BC
suy ra DH song song với EK
Xét tam giác CEK và BDH có :
BD= CE ( cm ở ý a)
góc CKE = góc BHD ( = 90 độ )
góc CBD = BCE ( cm ở ý a )
suy ra tam giác CEK= BDH (ch-gn)
suy ra DH = EK ( 2 cạnh tương ứng )
c) Xét tam giác BIC có góc CBD =BCE ( cm ở ý a ) suy ra tam giác BIC cân tại I
suy ra BI = CI ( t/c tam giác cân )
Xét tam giác AIC và AIB có :
AB =AC ( gt )
góc ACE = ABD ( cm ở ý a )
CI = BI ( cmt)
suy ra tam giác AIC = AIB ( c.g.c)
suy ra góc IAC = IAB (2 góc tương ứng )
suy ra AI là tia phân giác của góc BAC (1)
Mà tam giác ABC cân tại A ( 2)
Từ ( 1 ) và ( 2 ) suy ra AI vuông góc với BC
( nếu đúng nhớ kết bạn với tớ nhé ^-^)
a: DH vuông góc BC
EK vuông góc BC
=>DH//EK
b: góc BDH+góc B=90 độ
góc CEK+góc C=90 độ
góc B=góc C
=>góc BDH=góc CEK
(hình tự vẽ vì dễ)
a, vì BD=CE mà 2 cạnh này đều phụ với BC nên BE=CD
xét t.giác ABE và t.giác ACD có:
AB=AC(gt)
\(\widehat{ABE}\)=\(\widehat{ACD}\)(vì \(\widehat{ABC}\)=\(\widehat{ACB}\))
BE=CD(cmt)
=> t.giác ABE=t.giác ACD(c.g.c)
=>AE=AD
=>t.giác DAE cân tại A
b, xét 2 t.giác vuông DHB và EKC có:
DB=EC(gt)
\(\widehat{ABD}\)=\(\widehat{ACE}\)(gt)
=>t.giác DHB=t.giác EKC(CH-GN)
=>DH=EK
Do BD là tia phân giác \(\widehat{B}\)
=> \(\widehat{ABD} = \widehat{DBC}\)
DO CE là tia phân giác \(\widehat{C}\)
=> \(\widehat{ACE} = \widehat{ECB} \)
mà \(\widehat{B} = \widehat{C} \) ( do tam giác ABC cân tại A )
=> \(\widehat{ABD} = \widehat{ACE}\)
Xét tam giác ADB và tam giác AEC có :
AB = AC ( do tam giác ABC cân tại A )
\(\widehat{A}\) là góc chung
\(\widehat{ABD} = \widehat{ACE} ( cmt )\)
=> tam giác ADB = tam giác AEC ( g-c-g )
=> BD = EC ( hai cạnh tương ứng )
phần b và phần c thiếu đề nha bn