Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé !!!!!!!!!
a) Có tam giác ABC cân tại A => góc ABC = góc ACB và AB=AC ( tính chất tam giác cân)
Có góc ABC + góc BAC + góc ACB = 180 độ ( tổng 3 góc trong 1 tam giác )
Mà góc ABC = góc ACB => góc BAC = 180 độ - 2*góc ABC (1)
Có AE=AD => tam giác AED cân tại A ( định nghĩa tam giác cân) => góc AED = góc ADE ( tính chất tam giác cân)
Có góc ADE + góc AED + góc EAD = 180 độ (tổng 3 góc trong tam giác )
Mà góc ADE = góc AED => góc EAD = 180 độ - 2*góc AED hay góc BAC= 180 độ - 2* góc AED (2)
Từ (1) và (2) => góc AED = góc ABC mà 2 góc này ở vị trí đồng vị
=> ED // BC ( dấu hiệu nhận biết)
=> đpcm
b) Mk sửa lại đề bài là CE vuông góc AB nhé !!!!!!!!!!
Xét tam giác EAC và tam giác DAB có :
AE = AD
góc BAC chung
AB = AC
=> tam giác EAC = tam giác DAB ( c-g-c)
=> góc ADB = góc AEC ( 2 góc tương ứng )
Mà góc ADB = 90 độ ( vì BD vuông góc AC)
=> góc AEC = 90 độ
=> CE vuông góc AB
=> đpcm
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA+AF=BF
BE+EC=BC
mà BA=BE; AF=EC
nên BF=BC
=>ΔBFC cân tại B
mà BD là phângíac
nên BD vuông góc CF
c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc EDC+góc FDC=180 độ
=>E,D,F thẳng hàng
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
a) Vì \(\Delta ABC\)cân tại A nên:
=> \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(1)
Vì AE=AD => \(\Delta AED\)cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)(2)
Từ (1) và (2) => DE// BC ( 2 góc đồng vị bằng nhau)