Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm: Xét t/giác ABH và t/giác ACH
có góc B = góc C (vì t/giác ABC cân tại A)
AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> HB = HC (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)
Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = HB2 + AH2
=> AH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xem lại đề
a) Xét \(\Delta ABH;\Delta ACH\) có :
\(AB=AC\) (tam giác ABC cân tại A)
\(\widehat{ABH}=\widehat{ACH}\) (tam giác ABC cân tại A)
\(AH:chung\)
=> \(\Delta ABH=\Delta ACH\left(c.g.c\right)\)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
b) Sửa lại chút nhé : cho AH = 3cm, BC = 8cm. Tính AC (có gì không đúng thì bạn chia sẻ nhé)
Xét \(\Delta ABC\) cân tại A (gt) có :
\(AH\) là đường cao đồng thời là tia phân giác trong \(\Delta ABC\)
=> AH cũng là đường trung trực trong \(\Delta ABC\)
=> \(BH=HC\)(tính chất đường trung trực)
Nên : \(BH=HC=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta AHB\) có :
\(\widehat{AHB}=90^o\left(AH\perp BC-gt\right)\)
=> \(\Delta AHB\) vuông tại H
Ta có : \(AB^2=AH^2+BH^2\) (Định lí PYTAGO)
=> \(AB^2=4^2+3^2=25\)
=> \(AB=\sqrt{25}=5\left(cm\right)\)
Mà có : \(AB=AC\) (gt)
=> \(AC=5cm\left(đct\right)\)
c) Xét \(\Delta AEH;\Delta ADH\) có :
\(\widehat{EAH}=\widehat{DAH}\left(cmt\right)\)
\(AH:chung\)
\(\widehat{AEH}=\widehat{ADH}\left(=90^o\right)\)
=> \(\Delta AEH=\Delta ADH\) (cạnh huyền - góc nhọn)
=> \(AE=AD\) ( 2 cạnh tương ứng)
d) Xét \(\Delta ADE\) có :
\(AD=AE\left(cmt\right)\)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{AED}=\widehat{ADE}=\dfrac{180^o-\widehat{BAC}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A (gt) có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{BAC}}{2}\right)\)
Mà ta thấy : 2 góc này ở vị trí đồng vị
=> \(\text{ED // BC }\left(đpcm\right)\)
a, Xét △BAH vuông tại H và △CAH vuông tại H
Có: AB = AC (△ABC cân tại A)
AH là cạnh chung
=> △BAH = △CAH (ch-cgv)
=> BAH = CAH (2 góc tương ứng)
b, Ta có: BH + HC = BC => BH + HC = 8
Mà BH = HC (△BAH = △CAH)
=> BH = HC = 8 : 2 = 4 (cm)
Xét △AHC vuông tại H
Có: AC2 = AH2 + HC2
=> AC2 = 32 + 42
=> AC2 = 9 + 16
=> AC2 = 25
=> AC = 5 (cm)
c, Xét △EAH vuông tại E và △DAH vuông tại D
Có: AH là cạnh chung
EAH = DAH (cmt)
=> △EAH = △DAH (ch-gn)
=> AE = AD (2 cạnh tương ứng)
d, Xét △AED có: AE = AD (cmt) => △AED cân tại A
=> AED = (180o - EAD) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
a, sửa đề thành BAH^ = CAH^
Xét tam giác vuông BAH và tam giác vuông CAH
AH cạnh chung
B^=C^ (tam giác ABC cân tại A)
=>tam giác BAH = tam giác CAH ( cgv-gn )
=>BAH^=CAH^
bạn bấm vào đấy nhé ,bài này dài lắm bài 1. (6) nhé : kiêm tra 45' tiết 46 hình 7 dã chỉnh sửa - Giáo án-Thư viện ..