K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

a, Xét △BAH vuông tại H và △CAH vuông tại H

Có: AB = AC (△ABC cân tại A)

      AH là cạnh chung

=> △BAH = △CAH (ch-cgv)

=> BAH = CAH (2 góc tương ứng)

b, Ta có: BH + HC = BC => BH + HC = 8

Mà BH = HC (△BAH = △CAH)

=> BH = HC = 8 : 2 = 4 (cm)

Xét △AHC vuông tại H

Có: AC2 = AH2 + HC2  

=> AC2​ = 32​ + 42​ 

=> AC2​ = 9 + 16

=> AC2​ = 25

=> AC = 5 (cm)

c, Xét △EAH vuông tại E và △DAH vuông tại D

Có: AH là cạnh chung

      EAH = DAH (cmt)

=> △EAH = △DAH (ch-gn)

=> AE = AD (2 cạnh tương ứng)

d, Xét △AED có: AE = AD (cmt) => △AED cân tại A

=> AED = (180o - EAD) : 2     (1)

Vì △ABC cân tại A => ABC = (180o - BAC) : 2       (2)

Từ (1) và (2) => AED = ABC 

Mà 2 góc này nằm ở vị trí đồng vị

=> ED // BC (dhnb)

30 tháng 1 2022

đề bài có lỗi ko bạn ? 

a, Vì tam giác ABC cân tại A

AH là đường cao nên đồng thời là đường phân giác 

=> ^BAH = ^CAH 

b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến 

=> HB = HC = BC/2 = 4 cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)

c, Xét tam giác AEH và tam giác ADH ta có : 

^EAH = ^DAH (cmt) 

AH_chung 

^AEH = ^ADH = 900

Vậy tam giác AEH = tam giác ADH ( ch - gn ) 

=> AE = AD ( 2 cạnh tương ứng ) 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC 

=> ED // BC 

31 tháng 1 2022

mình cx k bt nx , tại thấy cô giao đề như thế nên mình cx chỉ bt lm theo thôi , và cảm ơn bn rất rất nhiều nha , mình đang bị bí ở bài này :3

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

b: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(AC^2=3^2+4^2=25\)

=>\(AC=\sqrt{25}=5\left(cm\right)\)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

Do đó: ΔAEH=ΔADH

=>AE=AD

d: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)

nên ED//BC

3 tháng 2 2016

bạn bấm vào đấy nhé ,bài này dài lắm bài 1. (6) nhé : kiêm tra 45' tiết 46 hình 7 dã chỉnh sửa - Giáo án-Thư viện ..

15 tháng 2 2022

TKimage

 

15 tháng 2 2022

bn lm sai r

 

13 tháng 1 2020

Trả lời

a) Ta có:

AB = AE + EB

AC = AD + DC

Mà AB = AC (gt)

=> EB = DC

Xét ΔBDCΔBDC và ΔCEBΔCEB có:

EB = DC (cmt)

góc BDC = góc CEB = 900

BC là cạnh chung

Vậy: ΔBDCΔBDC = ΔCEBΔCEB (cạnh huyền - cạnh góc vuông)

b) Ta có: BC = BH + HC

=> BH = HC = BC2BC2 = 8282= 4 (cm)

Áp dụng định lí Py - ta - go vào ΔAHCΔAHC vuông tại H có:

AC2 = AH2 + HC2

AC2 = 32 + 42

AC2 = 9 + 16

AC2 = 25

AC = 25−−√25= 5 (cm)

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

17 tháng 2 2020

a, sửa đề thành BAH^ = CAH^

Xét tam giác vuông BAH và tam giác vuông CAH

AH cạnh chung

B^=C^ (tam giác ABC cân tại A)

=>tam giác BAH = tam giác CAH ( cgv-gn )

=>BAH^=CAH^

TC
Thầy Cao Đô
Giáo viên VIP
27 tháng 12 2022

loading...

a) Xét hai tam giác vuông $AHB$ và $AHC$ có:

$AH$ là cạnh chung;

$AB = AC$ (gt);

Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)

Suy ra $HB = HC$ (Hai cạnh tương ứng)

$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).

b) Xét hai tam giác vuông $ADH$ và $AEH$ có:

$AH$ là cạnh chung;

$\widehat{BAH} = \widehat{CAH}$ (cmt);

Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).

Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

b: Ta có: HB=HC

H nằm giữa B và C

Do đó: H là trung điểm của BC

=>\(HB=HC=\dfrac{BC}{2}=4\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=5^2-4^2=9\)

=>\(AH=\sqrt{9}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H