Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tam giác $ABC$ cân tại $A$ nên:
$\widehat{ABC}=\frac{180^0-\widehat{A}}{2}$
$M,N$ là trung điểm của $AB,AC$ mà $AB=AC$ nên $AM=AN$
$\Rightarrow \triangle AMN$ cân tại $A$
$\Rightarrow \widehat{AMN}=\frac{180^0-\widehat{A}}{2}$
Do đó: $\widehat{ABC}=\widehat{AMN}$
$\Rightarrow MN\parallel BC$
Trên tia đối của tia $NM$ lấy $P$ sao cho $NM=NP$
Dễ chứng minh $\triangle AMN=\triangle CPN$ (c.g.c)
$\Rightarrow \widehat{AMN}=\widehat{CPN}$ $\Rightarrow AM\parallel CP$
$\Rightarrow BM\parallel CP$
$\Rightarrow \widehat{BMC}=\widehat{PCM}$ (so le trong)
Xét tam giác $BMC$ và $PCM$ có:
$MC$ chung
$\widehat{BMC}=\widehat{PCM}$ (cmt)
$\widehat{BCM}=\widehat{PMC}$ (so le trong)
$\Rightarrow \triangle BMC=\triangle PCM$ (g.c.g)
$\Rightarrow BC=PM=2MN\Rightarrow MN=\frac{BC}{2}$
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a)
Vì tam giác ABC cân tại A (gt)
=> AB = AC (TC tam giác cân)
Xét tam giác ABM và tam giác ACM có:
AB = AC (CMT)
AM chung
BM = CM (AM là đường trung tuyến)
=> tam giác ABM = tam giác ACM (c - c - c)
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔMBC=ΔNCB
b: ΔMBC=ΔNCB
=>\(\widehat{MCB}=\widehat{NBC}\)
Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)
nên \(\widehat{ABN}=\widehat{ACM}\)
c: AM+MB=AB
AN+NC=AC
mà AB=AC
và MB=NC
nên AM=AN
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
=>OB=OC
=>O nằm trên đường trung trực của BC(1)
AB=AC
=>A nằm trên đường trung trực của BC(2)
IB=IC
=>I nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,I thẳng hàng
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: BH=HC(hai cạnh tương ứng)
Bạn tự vẽ hình nha
Ta có:AB = AC ( △ABC cân tại A )
Mà AE = EB ( E là trung điểm của AB)
AD = ED ( D là trung điểm của AC)
Nên AE = ED
Xét △ABD và △ACE có
AB = AC ( △ ABC cân tại A )
A là góc chung
AE = ED ( cmt )
Vậy △ABD = △ACE ( c - g - c )
➩ DB = EC ( 2 cạnh tương ứng )
a) Ta có: ΔABC cân tại A (gt)
=> ˆB=180−ˆA2B^=180−A^2 (công thức của tam giác cân xem trong SGK)
Và AB = AC
Vì BM + AM = CN + AN
Mà AB = AC (cmt) và BM = CN (gt)
Nên AM = AN
Do đó ΔAMN là tam giác cân
=> ˆM=180−ˆA2M^=180−A^2
=> ˆM=ˆBM^=B^
Mà hai góc này ở vị trí đồng vị
Nên MN // BC
Vậy MN // BC
b) Xét hai tam giác ANB và AMC có:
AN = AM (cmt)
ˆAA^ là góc chung
AB = AC (cmt)
Nên ΔANB = ΔAMC (c.g.c)
Do đó ˆABN=ˆACMABN^=ACM^ (hai góc tương ứng)
Lại có: ˆABC=ˆACBABC^=ACB^ (vì ΔABC cân tại A)
Nên ˆIBC=ˆICBIBC^=ICB^
=> ΔIBC cân tại I
Vậy tam giác IBC cân tại I
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔABC có
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
Do đó: MN//BC
b: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
BN=CM
Do đó: ΔABN=ΔACM
a)M,N là trung điểm AB,AC
\(\Rightarrow MN\) là đường trung bình
\(\Rightarrow MN//BC\)
b) M là trung điểm \(AB\Rightarrow MB=\dfrac{AB}{2}màAB=AC\)
N_____\(AC\Rightarrow NC=\dfrac{AC}{2}\Rightarrow MB=NC\)
\(BNC=CMB\left(C-g-c\right)\Rightarrow CM=BN\)