K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

Xét ΔABC có

\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)

Do đó: MN//BC

b: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

BN=CM

Do đó: ΔABN=ΔACM

a)M,N là trung điểm AB,AC

\(\Rightarrow MN\) là đường trung bình

\(\Rightarrow MN//BC\)

b) M là trung điểm \(AB\Rightarrow MB=\dfrac{AB}{2}màAB=AC\)

N_____\(AC\Rightarrow NC=\dfrac{AC}{2}\Rightarrow MB=NC\)         

\(BNC=CMB\left(C-g-c\right)\Rightarrow CM=BN\)

M N b c A

                       

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

Tam giác $ABC$ cân tại $A$ nên:

$\widehat{ABC}=\frac{180^0-\widehat{A}}{2}$

$M,N$ là trung điểm của $AB,AC$ mà $AB=AC$ nên $AM=AN$

$\Rightarrow \triangle AMN$ cân tại $A$

$\Rightarrow \widehat{AMN}=\frac{180^0-\widehat{A}}{2}$

Do đó: $\widehat{ABC}=\widehat{AMN}$

$\Rightarrow MN\parallel BC$

Trên tia đối của tia $NM$ lấy $P$ sao cho $NM=NP$

Dễ chứng minh $\triangle AMN=\triangle CPN$ (c.g.c)

$\Rightarrow \widehat{AMN}=\widehat{CPN}$ $\Rightarrow AM\parallel CP$

$\Rightarrow BM\parallel CP$

$\Rightarrow \widehat{BMC}=\widehat{PCM}$ (so le trong)

Xét tam giác $BMC$ và $PCM$ có:

$MC$ chung

$\widehat{BMC}=\widehat{PCM}$ (cmt)

$\widehat{BCM}=\widehat{PMC}$ (so le trong)

$\Rightarrow \triangle BMC=\triangle PCM$ (g.c.g)

$\Rightarrow BC=PM=2MN\Rightarrow MN=\frac{BC}{2}$

 

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Hình vẽ:

undefined

24 tháng 1 2021

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

16 tháng 9 2023

a)

Vì tam giác ABC cân tại A (gt)

=> AB = AC (TC tam giác cân)

Xét tam giác ABM và tam giác ACM có:

AB = AC (CMT)

AM chung

BM = CM (AM là đường trung tuyến)

=> tam giác ABM = tam giác ACM (c - c - c)

 

 

a: Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔMBC=ΔNCB

b: ΔMBC=ΔNCB

=>\(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{ABN}+\widehat{CBN}=\widehat{ABC}\)

\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

mà \(\widehat{ABC}=\widehat{ACB};\widehat{CBN}=\widehat{MCB}\)

nên \(\widehat{ABN}=\widehat{ACM}\)

c: AM+MB=AB

AN+NC=AC

mà AB=AC

và MB=NC

nên AM=AN

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

d: Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)

nên ΔOBC cân tại O

=>OB=OC

=>O nằm trên đường trung trực của BC(1)

AB=AC

=>A nằm trên đường trung trực của BC(2)

IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

31 tháng 12 2020

giúp em với mọi người ơi

 

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

Suy ra: BH=HC(hai cạnh tương ứng)

3 tháng 2 2021

Bạn tự vẽ hình nha

Ta có:AB = AC ( △ABC cân tại A )

Mà AE = EB ( E là trung điểm của AB)

      AD = ED ( D là trung điểm của AC)

Nên AE = ED

Xét △ABD và △ACE có

         AB     =     AC ( △ ABC cân tại A )

        A là góc chung 

        AE      =     ED ( cmt )

Vậy △ABD = △ACE ( c - g - c )

➩ DB = EC ( 2 cạnh tương ứng )

        

3 tháng 2 2021

Có E,D lần lượt là trung điểm của AB ; AC 

Mà AB = AC

=> AE = AD

Xét t/g ABD và t/g ACE có

AB = AC

\(\widehat{A}\) : chung

AD = AE

=> t/g ABD = t/g ACE 

=> BD = CE

19 tháng 12 2021

a) Ta có: ΔABC cân tại A (gt)

=> ˆB=180−ˆA2B^=180−A^2 (công thức của tam giác cân xem trong SGK)

Và AB = AC

Vì BM + AM = CN + AN

Mà AB = AC (cmt) và BM = CN (gt)

Nên AM = AN

Do đó ΔAMN là tam giác cân

=> ˆM=180−ˆA2M^=180−A^2

=> ˆM=ˆBM^=B^

Mà hai góc này ở vị trí đồng vị

Nên MN // BC

Vậy MN // BC

b) Xét hai tam giác ANB và AMC có:

AN = AM (cmt)

ˆAA^ là góc chung

AB = AC (cmt)

Nên ΔANB = ΔAMC (c.g.c)

Do đó ˆABN=ˆACMABN^=ACM^ (hai góc tương ứng)

Lại có: ˆABC=ˆACBABC^=ACB^ (vì ΔABC cân tại A)

Nên ˆIBC=ˆICBIBC^=ICB^

=> ΔIBC cân tại I

Vậy tam giác IBC cân tại I