Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm: a) Ta có : AD + DB = AB
AE + EC = AC
và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)
=> AD = DE = AE = EC
Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc A: chung
AE = AD (cmt)
=> t/giác ABE = t/giác ACD (c.g.c)
b) Ta có: t/giác ABE = t/giác ACD (Cmt)
=> BE = CD (hai cạnh tương ứng)
c) Ta có: T/giác ABE = t/giác ACD (Cmt)
=> góc ABE = góc ACD (hai góc tương ứng)
Ta lại có: góc ADC + góc CDB = 1800 (kề bù)
góc ADB + góc BEC = 1800 (kề bù)
và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)
=> góc BDC = góc BEC
Xét t/giác BDK và t/giác CEK
có góc KDB = góc CEK (cmt)
DE = EC (Cmt)
góc DBK = góc ECK (Cmt)
=> t/giác BDK = t/giác CEK (g.c.g)
=> BK = KC (hai cạnh tương ứng)
=> t/giác KEC là t/giác cân tại K
Cm: a) Ta có : AD + DB = AB
AE + EC = AC
và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)
=> AD = DE = AE = EC
Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc A: chung
AE = AD (cmt)
=> t/giác ABE = t/giác ACD (c.g.c)
b) Ta có: t/giác ABE = t/giác ACD (Cmt)
=> BE = CD (hai cạnh tương ứng)
c) Ta có: T/giác ABE = t/giác ACD (Cmt)
=> góc ABE = góc ACD (hai góc tương ứng)
Ta lại có: góc ADC + góc CDB = 1800 (kề bù)
góc ADB + góc BEC = 1800 (kề bù)
và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)
=> góc BDC = góc BEC
Xét t/giác BDK và t/giác CEK
có góc KDB = góc CEK (cmt)
DE = EC (Cmt)
góc DBK = góc ECK (Cmt)
=> t/giác BDK = t/giác CEK (g.c.g)
=> BK = KC (hai cạnh tương ứng)
=> t/giác KEC là t/giác cân tại K
BK = CH (cm câu b) mà BE = EK = BK/2 (E là trung điểm BK) ; FC = CH/2 (F là trung điểm HC) => BE = EK = FC
\(\text{ΔBME,ΔCMF}\) có BM = CM ; BE = CF (cmt) ; \(\widehat{MBE}=\widehat{MCF}\)= (2 góc slt của BK // CH)
\(\text{⇒ΔBME = ΔCMF (c.g.c)}\) => ME = MF (2 cạnh tương ứng) ; \(\widehat{\text{BME}}=\widehat{\text{CMF}}\)= (2 góc tương ứng)
mà \(\widehat{\text{BME}}+\widehat{\text{EMC}}\) = 180 0 (kề bù)
\(\text{⇒ }\widehat{\text{CMF}}+\widehat{\text{EMC}}\)= 180 0
=> E,M,F thẳng hàng
Mình cũng có thể suy ra MBE a MCF bằng nhau nhờ câu b phải không bạn Bùi Nguyễn Việt Anh?
a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(AF=FC=\dfrac{AC}{2}\)(F là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AE=EB=AF=FC
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{BAF}\) chung
AF=AE(cmt)
Do đó: ΔABF=ΔACE(c-g-c)