K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(AF=FC=\dfrac{AC}{2}\)(F là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AE=EB=AF=FC

Xét ΔABF và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAF}\) chung

AF=AE(cmt)

Do đó: ΔABF=ΔACE(c-g-c)

17 tháng 4 2018
https://i.imgur.com/baow6cB.jpg
17 tháng 4 2018
https://i.imgur.com/t6nLnc5.jpg
7 tháng 2 2019

A B C D E K

Cm: a) Ta có : AD + DB = AB 

         AE + EC = AC

và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)

=> AD = DE = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

góc A: chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (Cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: T/giác ABE = t/giác ACD (Cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

Ta lại có: góc ADC + góc CDB = 1800 (kề bù)

                góc ADB + góc BEC = 1800 (kề bù)

và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)

=> góc BDC = góc BEC

Xét t/giác BDK và t/giác CEK

có góc KDB = góc CEK (cmt)

DE = EC (Cmt)

góc DBK = góc ECK (Cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> BK = KC (hai cạnh tương ứng)

=> t/giác KEC là t/giác cân tại K

Cm: a) Ta có : AD + DB = AB 

         AE + EC = AC

và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)

=> AD = DE = AE = EC

Xét t/giác ABE và t/giác ACD

có AB = AC (gt)

góc A: chung

AE = AD (cmt)

=> t/giác ABE = t/giác ACD (c.g.c)

b) Ta có: t/giác ABE = t/giác ACD (Cmt)

=> BE = CD (hai cạnh tương ứng)

c) Ta có: T/giác ABE = t/giác ACD (Cmt)

=> góc ABE = góc ACD (hai góc tương ứng)

Ta lại có: góc ADC + góc CDB = 1800 (kề bù)

                góc ADB + góc BEC = 1800 (kề bù)

và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)

=> góc BDC = góc BEC

Xét t/giác BDK và t/giác CEK

có góc KDB = góc CEK (cmt)

DE = EC (Cmt)

góc DBK = góc ECK (Cmt)

=> t/giác BDK = t/giác CEK (g.c.g)

=> BK = KC (hai cạnh tương ứng)

=> t/giác KEC là t/giác cân tại K

19 tháng 2 2018

BK = CH (cm câu b) mà BE = EK = BK/2 (E là trung điểm BK) ; FC = CH/2 (F là trung điểm HC) => BE = EK = FC

\(\text{ΔBME,ΔCMF}\) có BM = CM ; BE = CF (cmt) ; \(\widehat{MBE}=\widehat{MCF}\)= (2 góc slt của BK // CH)

\(\text{⇒ΔBME = ΔCMF (c.g.c)}\) => ME = MF (2 cạnh tương ứng) ; \(\widehat{\text{BME}}=\widehat{\text{CMF}}\)= (2 góc tương ứng)

mà \(\widehat{\text{BME}}+\widehat{\text{EMC}}\) = 180 0 (kề bù)

\(\text{⇒ }\widehat{\text{CMF}}+\widehat{\text{EMC}}\)= 180 0

=> E,M,F thẳng hàng

19 tháng 2 2018

Mình cũng có thể suy ra MBE a MCF bằng nhau nhờ câu b phải không bạn Bùi Nguyễn Việt Anh?