Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AH cũng là đường phân giác: ta có \(\widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90-\frac{x}{2}\)
ta có \(\frac{BC}{AB}=\frac{2BH}{BC}=2cos\left(90-\frac{x}{2}\right)\)
vì \(90\le x< 180=>0< 90-\frac{x}{2}\le45\)=> \(\frac{BC}{AB}=2cos\left(90-\frac{x}{2}\right)\ge2cos\left(45o\right)=\frac{2}{\sqrt{2}}=\sqrt{2}\)
vậy \(\frac{BC}{AB}=\sqrt{2}\)là nhỏ nhất, xảy ra khi 90\(-\frac{x}{2}=45< =>x=90\) hay góc BAC=90o
Ta có AB^2=AH^2+BH^2 (vi tam giac ABH vuong ơ H) .
Tương tư ta có AC^2=AH^2+CH^2 .=>AB^2+AC^2=2AH^2+BH^2+CH^2 .
<=>BC^2=2AH^2+BH^2+CH^2 (1) .
Lai co BH^2=BE^2+EH^2 ..................... CH^2=CF^2+HF^2 .
=>BH^2+CH^2=BE^2+CF^2+(EH^2+FH^2)=BE^2+... (vì AH^2=EH^2+FH^2) .
Thay vào (1) ta có BC^2=3AH^2+BE^2+CF^2. .
Ta có BE^2=BH^2-EH^2 ..................... CF^2=CH^2-HF^2 .
=>BE^2+CF^2=(BH^2+CH^2)-(EH^2+FH^2)=(BH... . =(BH+CH)^2-2BH*CH-AH^2
=BC^2-2AH^2-AH^2 (vi tam giac ABC vuong o A nen BH*CH=AH^2) .=4a^2-3AH^2 .
Đê BE^2+CF^2 đat min thì AH^2 dat max hay tưc là AH max .
Do goc BAC=90 nen A thuoc đương tròn đương kinh BC .
=>AH lơn nhat khi A là diem chinh giua cung BC.
Hay tam giac ABC vuong can ơ A .(chú ý bài toan chi yeu câu tim ĐK cua tam giac ABC nen ta khong can tim min cua BE^2+CF^2)
Vậy.............
Xét tứ giác BFME có
\(\widehat{BFM}=\widehat{BEM}=\widehat{EBF}=90^0\)
Do đó: BFME là hình chữ nhật
Để BFME là hình vuông thì BF=BE
hay BA=BC