Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét ΔABC có
H là trung điểm của CB
HD//AB
=>D là trung điểm của AC
ΔAHC vuông tại H có HD là trung tuyến
nên DH=DC
=>ΔDHC cân tại D
=>DM vuông góc HC
=>DM//AH
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
A C M B H G
a) Xét \(\Delta AHB\)và \(\Delta AHC\)có:
AB = AC, B = C \(\Rightarrow\)\(\Delta AHB\)= \(\Delta AHC\)(cạnh huyền - góc nhọn)
b) Xét \(\Delta AHC\)theo định lí Pi-ta-go ta có:
\(AC^2=AH^2+HC^2=4^2+3^2\)\(=16+9=25\Rightarrow AC=5cm\)
c) Xét \(\Delta AHC\) và \(\Delta MHC\)có:
AH = MH, CH chung \(\Rightarrow\)\(\Delta AHC\)= \(\Delta MHC\)( cạnh góc vuông )
\(\Rightarrow\)HAC = HMC \(\Rightarrow\)HMC = HAB \(\Rightarrow\)AB // CM
Hình bạn tự vẽ nha
a. Xét tam giác ABH và tam giác ACH có
cạnh AH chung
góc BAH = góc CAH [ vì AH là pg góc A ]
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác ABH = tam giác ACH [ c.g.c ]
\(\Rightarrow\)góc AHB = góc AHC [ góc tương ứng ]
mà góc AHB + góc AHC = 180độ
\(\Rightarrow\)góc AHB = góc AHC = \(\frac{180}{2}\)= 90độ
\(\Rightarrow\)AH vuông góc với BC
b.Theo câu a ; tam giác ABH = tam giác ACH
\(\Rightarrow\)HB = HC mà H\(\in\)BC
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow\)AH là đường trung tuyến của tam giác ABC \((1)\)
Vì D là trung điểm của AC nên
BD là đường trung trực của tam giác ABC\((2)\)
Từ \((1),(2)\)và G là giao điểm của AH , BD suy ra
G là trọng tâm của tam giác ABC
c.Ta có góc AGC + góc CGH = 180độ [ vì ba điểm A, G,H thẳng hàng ]
mà góc CGH = góc AGH [ đối đỉnh ]
\(\Rightarrow\)góc CGK = góc AGC + góc AGH = 180độ
Vậy góc CGK = 180độ
\(\Rightarrow\)Ba điểm C,G,K thẳng hàng
học tốt
Kết bạn với mình nhé
a: Xet ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
=>ΔAHB=ΔAHC
b: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
CB chung
=>ΔNBC=ΔMCB
=>góc GBC=góc GCB
=>ΔGCB cân tại G
c: góc ECG+góc BCG=90 độ
góc GBC+góc GEC=90 độ
mà góc BCG=góc GBC
nên góc ECG=góc GEC
=>GC=GE=GB
=>G là trung điểm của BE
Xét ΔEBC có GD//CB
nên GD/CB=EG/EB=1/2
=>CB=2GD
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: góc MAH=góc BAH
góc BAH=góc MHA
=>góc MAH=góc MHA
=>ΔMAH cân tại M
c: Xét ΔACB có
H la trung điểm của CB
HM//AB
=>M là trung điểm của AC
=>B,G,M thẳng hàng