Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>BC/sin120=a/sin30=2a
=>BC=a*căn 3
ta có \(AH=\sqrt{AB^2-BH^2}=\sqrt{10^2-6^2}=8cm\)
khi đó \(sinABC=\frac{AH}{AB}=\frac{8}{10}=\frac{4}{5}\)
ta có \(BK.AC=AH.BC=2S_{ABC}\Rightarrow BK=\frac{AH.BC}{AC}=\frac{36}{5}cm\)
nên \(sinBAC=\frac{BK}{BA}=\frac{18}{25}\)
a, vi D nam giua cung BC =>cung BD = cung CD=>goc BAD = goc CAD
=>AD la phan giac cua goc BAC
b, vi D la diem chinh giua cua cung BC =>OD vuong goc vs BC
=>tam giac BOD vuong tai O
=>BD2=OB2+OD2=R2+R2=2R=>BD=R căn 2
kẻ đường cao BH. Khi đó tam giác ABH vuông cân tại H => AH = BH = (a căn 2)/2
=> HC = a - (a căn 2)/2= a(2 -căn2)/2
=> BC^2= BH^2 + HC^2 => BC = a căn(2- căn 2)
tại sao khi kẻ đường cao bh thì tam giác ABH cân tại H
Đề cho AH là đg cao đk b?
Vì tg ABC cân tại A nên AH là đg cao cũng là trung tuyến và p/g
Do đó \(BH=\dfrac{1}{2}BC=6\left(cm\right);\widehat{BAH}=\dfrac{1}{2}\widehat{BAC}=60^0\)
Xét tg AHB vuông tại H:
\(\tan\widehat{BAH}=\dfrac{BH}{AH}=\tan60^0=\sqrt{3}\\ AH=\dfrac{6}{\sqrt{3}}=2\sqrt{3}\left(cm\right)\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(cos35=\dfrac{8^2+8^2-BC^2}{2\cdot8\cdot8}\)
=>\(128-BC^2=2\cdot64\cdot cos35=128\cdot cos35\)
=>\(BC=\sqrt{128-128\cdot cos35}\simeq4,81\left(cm\right)\)
Xét ΔADC có \(\dfrac{CD}{sinCAD}=\dfrac{AC}{sinADC}\)
=>\(\dfrac{8}{sinADC}=\dfrac{6}{sin43}\)
=>\(sinADC=8\cdot\dfrac{sin43}{6}\simeq0,91\)
=>\(\widehat{ADC}\simeq65^0\)
Kẻ đường cao sau đó dùng ht giữa cạnh và góc là ra
Kẻ đường cao AH ta có: góc BAH = góc CAH = 22 độ 30 phút.
\(BC=BH+CH=2a.\sin22^030'=a.\frac{2-\sqrt{2}}{2}\)