Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Ta có :
Δ ABC vuông tại A
Mà AI là đường trung tuyến của BC
=> AI = BI = IC
Xét Δ AIB, có :
AI = BI (cmt)
=> Δ AIB cân tại A
Xét Δ AIC, có :
AI = AC (cmt)
=> Δ AIC cân tại I
bài 3
bạn tự kẻ hình nha
a)*Tam giác IAB có I thuộc trung trực AB
=> Tam giác IAB cân tại I
*Có IAC = 90 – BAI
BCA = 90 – ABC (mà ABC = BAI)
=>Tg IAC cân tại I
b)*Tg BMC có đg cao CA cắt đg cao MI tại N
=>N là trực tâm
=>BE vg góc MC
c)*M thuộc trung trực BC => MB = MC => MBC = MCB
*N thuộc trung trực BC => NB = NC => NBC = NCB
=> Tg BAC = Tg CEB (cgc)
=> MA = ME => M thuộc trung trực AE
* Gọi J là giao của MI và AE
=> Tg MJA = Tg MJE (cgc)
=> MI vuông góc AE (mà MI vg góc BC)
=>AE // BC d)* Có NB = NC (cmt)
mà EB = AC (hai cạnh tương ứng do Tg BAC = Tg CEB)
=>NA = NE
=>Tg NAE cân tại N
=>NAE = NEA
mà NEA = NBC (slt) = NCB (Tg NCB cân taih N – cmt ) = IAC (Tg IAC cân tại I – cmt)
=>NAE = IAC
=>AK là tpg IAE ( K là giao của AN và IE)
mà AK cx là trung tuyến Tg IAE ( do N là trọng tâm – gt )
=>Tg IAE cân tại A
=>IA = IE
mà IA = IC (Tg IAC cân tại I – cmt)
=>IE = IC
=>Tg IEA = Tg EIC (cgc)
=>IA = EC
mà EC = BA (cmt)
=>IA = BA
=>Tg IAB đều
=>ABC = 60
=>Tg ABC cần có góc ABC = 60 để N là trọng tâm Tg IAE
k cho mk nha
a: AN=AB/2
AM=AC/2
mà AB=AC
nên AN=AM
=>ΔANM cân tại A
b: Xét ΔNBE vuông tại N và ΔMCD vuông tại M có
NB=MC
góc B=góc C
=>ΔNBE=ΔMCD
c: ΔNBE=ΔMCD
=>BE=CD
=>BD+DE=CE+DE
=>BD=CE
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE
b: BA=BE
DA=DE
=>BD là đường trung trực của AE
c: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADK=góc EDC
=>ΔDAK=ΔDEC
=>DK=DC>DA
d: BK=BC
DK=DC
=>BD là trung trực của CK
=>BD vuông góc CK
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
Sửa đề chút. Tam giác \(ABC\)vuông tại \(A\).
a) \(I\)thuộc trung trực của \(AB\)nên \(IA=IB\)suy ra tam giác \(AIB\)cân tại \(I\).
Tam giác \(ABC\)vuông tại \(A\)có \(IA=IB\), \(I\in BC\)suy ra \(I\)là trung điểm của \(BC\)
suy ra \(IA=IB=IC\)\(\Rightarrow\Delta AIC\)cân tại \(I\).
b) Xét tam giác \(BCM\)có \(MI\perp BC,CA\perp MB\)và \(CA\)cắt \(MI\)tại \(N\)nên \(N\)là trực tâm của tam giác \(BCM\).
Suy ra \(EB\perp MC\).
c) \(N\)thuộc đường trung trực của \(BC\)nên \(NB=NC\)
suy ra \(\Delta NAB=\Delta NEC\)(cạnh huyền - góc nhọn)
suy ra \(AB=EC\)
mà \(MB=MC\)(do \(M\)thuộc đường trung trực của \(BC\))
nên \(MB-AB=MC-EC\Leftrightarrow MA=ME\)
suy ra \(\widehat{MAE}=\frac{180^o-\widehat{AME}}{2}\)
mà \(\widehat{MBC}=\frac{180^o-\widehat{BMC}}{2}\)
mà hai góc này ở vị trí đồng vị do đó \(AE//BC\).
d) Có \(AE//BC\)suy ra \(\widehat{NAE}=\widehat{ACI}\)(hai góc so le trong)
suy ra \(\widehat{NAE}=\widehat{NAI}\)(vì \(\widehat{IAC}=\widehat{ICA}\)do tam giác \(IAC\)cân tại \(I\))
Tam giác \(AIE\)có \(AN\)vừa là trung tuyến vừa là phân giác nên tam giác \(AIE\)cân tại \(A\).
suy ra tam giác \(AIE\)đều (vì \(IE=IA\))
suy ra \(\widehat{ACB}=\widehat{NAE}=\frac{1}{2}\widehat{EAI}=\frac{1}{2}.60^o=30^o\).
Vậy tam giác \(ABC\)có \(\widehat{ACB}=30^o\)thì \(N\)là trọng tâm tam giác \(AIE\).