Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:
\(BI\cdot BD=AB^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)
\(AC=\sqrt{BC^2-AB^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\Rightarrow\widehat{B}=60^0\\ \widehat{C}=90^0-\widehat{B}=30^0\\ 2,\sin B\cdot\tan B=\dfrac{AC}{AB}\cdot\dfrac{AC}{BC}=\dfrac{AC^2}{AB\cdot BC}=\dfrac{HC\cdot BC}{AB\cdot BC}=\dfrac{HC}{AB}\\ 3,\dfrac{CI}{IB}=\dfrac{AC}{AB}=\sqrt{3}\Leftrightarrow CI=\sqrt{3}IB\\ CI+IB=BC=20\\ \Rightarrow\left(\sqrt{3}+1\right)IB=20\Leftrightarrow IB=\dfrac{20}{\sqrt{3}+1}=10\sqrt{3}-10\left(cm\right)\\ HB=\dfrac{AB^2}{BC}=5\left(cm\right)\left(HTL\right)\\ IH=IB-HB=10\sqrt{3}-15\left(cm\right)\)
Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.