Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải có tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-cac-phan-giac-bd-cea-xac-dinh-tu-giac-bedcb-tinh-chu-vi-tu-giac-do-biet-bc-15cm-ed-9cm.1953042881633
a: Xét ΔABD và ΔACE có
\(\widehat{ABD}=\widehat{ACE}\)
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
b: Xét ΔEBD có \(\widehat{EBD}=\widehat{EDB}\left(=\widehat{DBC}\right)\)
nên ΔEBD cân tại E
Suy ra: ED=EB
mà EB=DC
nên BE=ED=DC
Lời giải:
a. Theo tính chất tia phân giác, do $BD$ là pg $\widehat{B}$, $CE$ là phân giác $\widehat{C}$ nên:
$\frac{AD}{DC}=\frac{AB}{BC}$
$\frac{AE}{EB}=\frac{AC}{BC}$
Mà $AB=AC$ (do tam giác $ABC$ cân)
$\Rightarrow \frac{AD}{DC}=\frac{AE}{EB}$
$\Rightarrow ED\parallel BC$ (theo định lý Talet)
$\Rightarrow BEDC$ là hình thang
Mà 2 góc ở đáy là $\widehat{B}, \widehat{C}$ bằng nhau do $ABC$ cân tại $A$
$\Rightarrow BEDC$ là hình thang cân.
b.
$\widehat{EDB}=\widehat{DBC}$ (so le trong)
$\widehat{DBC}=\widehat{EBD}$ (do $BD$ là pg $\widehat{B})$
$\Rightarrow \widehat{EDB}=\widehat{EBD}$
$\Rightarrow EBD$ là tam giác cân tại $E$
$\Rightarrow EB=ED=9$ (cm)
$BEDC$ là htc nên $DC=EB=9$ (cm)
Do đó:
$P_{BEDC}=ED+EB+DC+BC=9+9+9+15=42$ (cm)
a)Ta có: tam giác ABC là tam giác cân tại A.
=> góc B= góc C
Vì BD và CE là phân giác góc B và C
=> góc DBC = góc EBD = góc DCE = góc ECB
Xét tam giác EBC và tam giác DBC có:
góc ECB = góc DBC
góc BCD = góc EBC
Chung cạnh BC
=> tam giác EBC = tam giác DCB( g.c.g)
=> EC = DB
=> tứ giác BECD là hình thang cân (vì có 2 đường chéo bằng nhau)
b) mk chưa biết làm
a)Gợi ý:
Đầu tiên bạn chứng minh BEDC là hình thang, sau đó chứng minh nó là hình thang cân.
Ta có:
góc B = (1800 - Â) : 2
rồi chứng minh tam giác EAD cân tại A, sau đó => góc AED = góc B = (1800 - Â) : 2
=> ED // BC (2 góc đồng vị)
=> BECD là hình thang (2 cạnh đối song song với nhau)
mà góc B = góc C (tam giác ABC cân tại A)
=> BECD là hình thang cân (2 góc kề 1 đáy bằng nhau)
bài b thì mk chưa học
a/ Ta có: \(AB=AC\Leftrightarrow AD+BD=AE+CE\). Mà BD = CE (gt)
\(\Rightarrow AD=AE\)
Vậy: △ADE cân tại A (đpcm)
==========
b/ Ta có: △ADE cân tại A \(\Rightarrow\hat{ADE}=\dfrac{180\text{ }\text{˚}-\hat{A}}{2}\)
△ABC cân tại A \(\Rightarrow\hat{ABC}=\dfrac{180\text{˚}-\hat{A}}{2}\)
- Mà 2 góc này ở vị trí đồng vị
Vậy: DE // BC (đpcm)
==========
c/ DE // BC (cmt) ⇒ Tứ giác BDEC là hình thang
- BDEC có \(\hat{B}=\hat{C}\)
Vậy:Tứ giác BDEC là hình thang cân (đpcm)
Chúc bạn học tốt!