K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{4}=\dfrac{AC}{5}=\dfrac{BC}{6}=\dfrac{AB+AC+BC}{4+5+6}=\dfrac{30}{15}=2\)

Do đó: AB=8cm; AC=10cm; BC=12cm

=>\(\widehat{C}< \widehat{B}< \widehat{A}\)

b: \(\cos MAB=\dfrac{AB^2+AM^2-BM^2}{2\cdot AB\cdot AM}=\dfrac{AB^2+AM^2-CM^2}{2\cdot AB\cdot AM}\)

\(\cos MAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

mà \(\dfrac{AB^2+AM^2-MC^2}{2\cdot AM\cdot AC}< \dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}\)

nên \(\widehat{MAB}>\widehat{MAC}\)

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giácBài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giácBài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BCBài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng: 
   a) Góc AMB < góc AMC
   b) Góc MAB > góc CAM
   c) Góc ADB < góc ADC
   d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
   a) BC > CE; CE ⊥ AC
   b) Góc ABM > góc MBC

0
15 tháng 3 2021

Trên tia đối tia MA lấy điểm D sao cho MD = MA Xét ΔAMB và ΔDMC, ta có: MA = MD (theo cách vẽ) ∠(AMB) = ∠(DMC) (đối đỉnh) MB = MC (gt) Suy ra: ΔAMB = ΔDMC (c.g.c) Suy ra: AB = CD (2 cạnh tương ứng) và ∠D = ∠A1(2 góc tương ứng) (1) Mà AB < AC (gt) nên: CD < AC Trong ΔADC, ta có: CD < AC Suy ra: ∠D > ∠A2(đối diện cạnh lớn hơn là góc lớn hơn) (2) Từ (1) và (2) suy ra: ∠A1 > ∠A2hay ∠(BAM) > ∠(MAC)

Lấy E sao choD là trung điểm của AE

Xét tứ giác ABEC có

D là trung điểm chung của AE và BC

=>ABEC là hbh

=>AB=EC

=>EC<AC

=>góc EAC<góc AEC

=>góc EAC<góc BAD