Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D 1 x
AI là tia phân giác của góc BAC => \(\widehat{BAI}=\widehat{IAC}=\frac{1}{2}\widehat{BAC}\)
AD là tia phân giác ngoài tại đỉnh A => \(\widehat{BAD}=\widehat{DAx}=\frac{1}{2}\widehat{BAx}\)
=> \(\widehat{BAI}+\widehat{BAD}=\frac{1}{2}\widehat{BAC}+\frac{1}{2}\widehat{BAx}=\frac{1}{2}\left(\widehat{BAC}+\widehat{BAx}\right)=\frac{1}{2}\widehat{CAx}=\frac{1}{2}.180^o=90^o\)
hay góc IAD = 90o
90 độ nhé
dễ dàng CM được tính chất sau: đường phân giác trong vuông góc với phân giác ngoài tại cùng 1 đỉnh
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.