Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
90 độ nhé
dễ dàng CM được tính chất sau: đường phân giác trong vuông góc với phân giác ngoài tại cùng 1 đỉnh
A B C I D 1 x
AI là tia phân giác của góc BAC => \(\widehat{BAI}=\widehat{IAC}=\frac{1}{2}\widehat{BAC}\)
AD là tia phân giác ngoài tại đỉnh A => \(\widehat{BAD}=\widehat{DAx}=\frac{1}{2}\widehat{BAx}\)
=> \(\widehat{BAI}+\widehat{BAD}=\frac{1}{2}\widehat{BAC}+\frac{1}{2}\widehat{BAx}=\frac{1}{2}\left(\widehat{BAC}+\widehat{BAx}\right)=\frac{1}{2}\widehat{CAx}=\frac{1}{2}.180^o=90^o\)
hay góc IAD = 90o
Bài 1:
B D A H C E
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
Theo yêu cầu vẽ hình của bạn Hyouka :)
2.
: B A C H D TH: ^B > ^C B A C H D TH: ^B < ^C
a) Ta có: ABDˆ=900,ABD^=900 và ACDˆ=900ACD^=900
⇔ABDˆ=ACDˆ⇔ABD^=ACD^
⇒ABCˆ+CBDˆ=ACBˆ+BCDˆ⇒ABC^+CBD^=ACB^+BCD^
Mà ABCˆ=ACBˆABC^=ACB^ (Tam giác ABC cân tại A)
⇔CBDˆ=BCDˆ⇔CBD^=BCD^
⇔ΔBCD⇔ΔBCD cân tại D
b) Xét tam giác ABD và tam giác ACD, có:
AB=ACAB=AC (Tam giác ABC cân tại A)
BD=CD (Tam giác BCD cân tại D)
ABDˆ=ACDˆ=900
⇔ΔABD=ΔACD (Hai cạnh góc vuông)
⇔BADˆ=CADˆ(Hai cạnh tương ứng)
=> AD là tia phân giác góc A
Lại có: ADBˆ=ADCˆ (ΔABD=ΔACD)
=> DA là tia phân giác góc D
Học tốt
https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A.+Qua+B+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AB,+qua+C+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC,+ch%C3%BAng+c%E1%BA%AFt+nhau+%E1%BB%9F+D.+Ch%E1%BB%A9ng+minh:++a.+Tam+gi%C3%A1c+BDC+c%C3%A2n.+++b.+AB+l%C3%A0+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+A+++++++DA+l%C3%A0+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+D++c.+AD+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+v%C3%A0+AD+%C4%91i+qua+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+BC.&id=558420
bạn tham khảo nhé