K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOBD và ΔECO có

góc OBD=góc ECO

góc DOB=góc OEC

Do đó: ΔOBD đồng dạng với ΔECO

SUy ra: \(\dfrac{OB}{EC}=\dfrac{BD}{CO}\)

hay \(BD\cdot EC=OB^2\)

b: góc DOE=180 độ-góc DOB-góc EOC

=180 độ-góc OEC-góc EOC

=180 độ-180 độ+góc ACB

=góc ACB=const(3)

c: Vì ΔOBD đồng dạng với ΔECO

nên OD/EO=BD/CO=>OD/EO=BD/BO

=>OD*BO= EO*BD=>EO/OB =OD/BD (4)

Mặt khác :từ (3) =>g DOE =g OBD (5)

Từ (4) và (5) => tg EOD đồng dạng tg OBD

4 tháng 8 2016

d)  2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\)                              (1)

2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\)                                 (2)

Từ  (1)  và  (2)  ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)

Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)

Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).

3 tháng 8 2016

a) Tg OBD và Tg ECO có 
g OBD = g ECO (tg ABC cân tại A) (1) 
g BOD = g OEC (gt) (2) 
(1) và (2) => Tg OBD đồng dạng Tg ECO 
=>OB/EC = BD/CO => OB*CO = EC*BD. 
Mà OB = CO => OBbình = EC*BD 
b) Ta có: gDOE = 180 độ - (gBOD + gEOC) 
= 180 độ - (gOEC + gCOE) 
= 180 độ - (180 độ - gOCE) 
= gOCE = gBCA = const (3) 
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO => 
=> OD*BO = EO*BD => EO/OB = OD/BD (4) 
Mặt khác: từ(3) =>gDOE = gOBD (5) 
từ (4) và (5) => TgEOD đồng dạng TgOBD 

21 tháng 4 2021

a) △OBD và △ ECO có:

+\(\widehat{OBD}=\widehat{ECO}\) (△ ABC cân tại A ) (1)

 + \(\widehat{BOD}=\widehat{OEC}\) (gt) (2)

Từ (1) và (2) => △ OBD đồng dạng △ECO

ð OB/EC = BD/CO => OB*CO = EC*BD

Mà OB = CO => OB2 = EC*BD

b) Ta có :\(\widehat{DOE}=180^0-\left(\widehat{BOD}+\widehat{EOC}\right)\)

=)\(180^0-\left(\widehat{OEC}+\widehat{COE}\right)\)

=\(180^0-\left(180^0-\widehat{OCE}\right)\)

=\(\widehat{OCE}=\widehat{BCA}=\) h/s (3)

c) Theo câu a : △ OBD đồng dạng △ ECO => OD/EO = BD/CO => OD/EO = BD/BO

=> OD*BO = EO*BD => EO/OB = OD/BD (4)

Mặt khác :từ (3) =>\(\widehat{DOE}=\stackrel\frown{OBD}\) (5)

Từ (4) và (5) => △ EOD ∼ △ OBD

9 tháng 2 2018

a)tg OBD và Tg ECO có

g OBD = g ECO (tg ABC cân tại A )(1)

g BOD =gOEC (gt)(2)

từ (1)và (2) => Tg OBD đồng dạng Tg ECO

ð OB/EC=BD/CO=>OB*CO=EC*BD

Mà OB = CO => OB bình =EC*BD

b)ta có g DOE =180 độ -(g BOD +g EOC)

=180 độ-(g OEC +g COE)

=180độ -(180 độ -g OCE )

=g OCE =g BCA =const (3)

c) Theo câu a :Tg OBD đồng dạng Tg ECO => OD/EO=BD/CO=>OD/EO=BD/BO

=>OD*BO= EO*BD=>EO/OB =OD/BD (4)

Mặt khác :từ (3) =>g DOE =g OBD (5)

Từ (4) và (5) => tg EOD đồng dạng tg OBD

9 tháng 2 2018

ko vẽ hình à

23 tháng 3 2016

cho tam giác đều mà góc xOy ở đâu ra z

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

23 tháng 4 2018

Sai đề bài rồi bn.