Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A )(1)
g BOD =gOEC (gt)(2)
từ (1)và (2) => Tg OBD đồng dạng Tg ECO
ð OB/EC=BD/CO=>OB*CO=EC*BD
Mà OB = CO => OB bình =EC*BD
b)ta có g DOE =180 độ -(g BOD +g EOC)
=180 độ-(g OEC +g COE)
=180độ -(180 độ -g OCE )
=g OCE =g BCA =const (3)
c) Theo câu a :Tg OBD đồng dạng Tg ECO => OD/EO=BD/CO=>OD/EO=BD/BO
=>OD*BO= EO*BD=>EO/OB =OD/BD (4)
Mặt khác :từ (3) =>g DOE =g OBD (5)
Từ (4) và (5) => tg EOD đồng dạng tg OBD
a: Xét ΔOBD và ΔECO có
góc OBD=góc ECO
góc DOB=góc OEC
Do đó: ΔOBD đồng dạng với ΔECO
SUy ra: \(\dfrac{OB}{EC}=\dfrac{BD}{CO}\)
hay \(BD\cdot EC=OB^2\)
b: góc DOE=180 độ-góc DOB-góc EOC
=180 độ-góc OEC-góc EOC
=180 độ-180 độ+góc ACB
=góc ACB=const(3)
c: Vì ΔOBD đồng dạng với ΔECO
nên OD/EO=BD/CO=>OD/EO=BD/BO
=>OD*BO= EO*BD=>EO/OB =OD/BD (4)
Mặt khác :từ (3) =>g DOE =g OBD (5)
Từ (4) và (5) => tg EOD đồng dạng tg OBD
d) 2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\) (1)
2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\) (2)
Từ (1) và (2) ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)
Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)
Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).
a) Tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A) (1)
g BOD = g OEC (gt) (2)
(1) và (2) => Tg OBD đồng dạng Tg ECO
=>OB/EC = BD/CO => OB*CO = EC*BD.
Mà OB = CO => OBbình = EC*BD
b) Ta có: gDOE = 180 độ - (gBOD + gEOC)
= 180 độ - (gOEC + gCOE)
= 180 độ - (180 độ - gOCE)
= gOCE = gBCA = const (3)
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO =>
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác: từ(3) =>gDOE = gOBD (5)
từ (4) và (5) => TgEOD đồng dạng TgOBD
Nguyễn Huy Tú,Akai Haruma,Nguyễn Thanh Hằng,Mysterious Person, giúp em vs em đag cần gấp
a: Xét ΔBOD và ΔAOE có
OB/OA=OD/OE
góc BOD=góc AOE
=>ΔBOD đồng dạng với ΔAOE
b: ΔBOD đồng dạng với ΔAOE
=>góc BDO=góc AEO
=>góc CEB=góc CDA
mà góc C chung
nên ΔCEB đồng dạng với ΔCDA
a, Ta có:
ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒ADAB=412=13;AEAC=515=13⇒ADAB=AEAC⇒Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.⇒⇒ DE//AE
Xét tam giác ADE và ABC có:
ADAB=AEACADAB=AEAC
ˆDAE=ˆBACDAE^=BAC^
⇒⇒ Tam giác ADF đồng dạng với tam giác ABC
Đọc tiếp
a) △OBD và △ ECO có:
+\(\widehat{OBD}=\widehat{ECO}\) (△ ABC cân tại A ) (1)
+ \(\widehat{BOD}=\widehat{OEC}\) (gt) (2)
Từ (1) và (2) => △ OBD đồng dạng △ECO
ð OB/EC = BD/CO => OB*CO = EC*BD
Mà OB = CO => OB2 = EC*BD
b) Ta có :\(\widehat{DOE}=180^0-\left(\widehat{BOD}+\widehat{EOC}\right)\)
=)\(180^0-\left(\widehat{OEC}+\widehat{COE}\right)\)
=\(180^0-\left(180^0-\widehat{OCE}\right)\)
=\(\widehat{OCE}=\widehat{BCA}=\) h/s (3)
c) Theo câu a : △ OBD đồng dạng △ ECO => OD/EO = BD/CO => OD/EO = BD/BO
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác :từ (3) =>\(\widehat{DOE}=\stackrel\frown{OBD}\) (5)
Từ (4) và (5) => △ EOD ∼ △ OBD