Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
Xét ΔACB có AD là phân giác
nên BD/AB=CD/AC
=>CD/7=2/5
=>CD=2,8cm
Tam giác ABD và BDC có :
\(\frac{AB}{DC}=\frac{AD}{BC}=\frac{BD}{BC}=\frac{1}{2}\)
\(\Rightarrow ABD~BDC\left(c-c-c\right)\)
\(\Rightarrow ABD=BDC\)
\(\Rightarrow AB//DC\)
=> Tứ giác ABCD có AB // DC
=> Tứ giác ABCD là hình thang
a) Xét tam giác ABD và tam giác BDC ta có :
AB/BD = 3/6 = 1/2
AD/BC = 5/10 = 1/2
BD/DC = 6/12 = 1/2
Vậy AB/BD = AD/BC = BD/BC
=^ tam giác ABD và tam giác BDC đồng dạng (ccc)
b ) do tam giác ABD và tam giác BDC đồng dạng
vậy tam giác ABD = tam giác BDC ( hai góc tương ứng)mà hai góc này ở vị trí so le trong AB/CD
Vậy tứ giác ABCD là hình thang có đáy là AB, DC
Bạn thấy bài mình đúng thì chọn câu trả lời của mình nhé bạn ! mình đã trả lời đầu tiên bài của bạn đấy ạ
Áp dụng tính chất đường phân giác vào tam giác ABC , có :
AD là đường phân giác góc A ( D \(\in BC\) )
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{10}{7}\)
Vây tỉ số của \(\dfrac{DB}{DC}\) là \(\dfrac{10}{7}\)
coppy à,nên mới như thế
Vì AD là đường phân giác của tam giác ABC
Áp dụng tính chất đường phân giác của tam giác
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{CD}=\frac{10}{7}\)