Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $BDC$ và $ABC$ có:
$\widehat{BDC}=\widehat{ABC}$ (gt)
$\widehat{C}$ chung
$\Rightarrow \triangle BDC\sim \triangle ABC$ (g.g)
$\Rightarrow \frac{BD}{AB}=\frac{DC}{BC}=\frac{BC}{AC}$
$\Rightarrow BC^2=AC.DC=(AD+DC).DC=(7+9).9=144$
$\Rightarrow BC=12$
$\Rightarrow \frac{BD}{AB}=\frac{DC}{BC}=\frac{9}{12}=\frac{3}{4}$
a) Ta có: \(\dfrac{AB}{AD}=\dfrac{AM}{AI}=\dfrac{1}{2}\)
⇒ DI // BM
mà M ∈ BC ⇒ DI // BC ( 1 )
b) Ta có: \(\dfrac{BA}{AD}=\dfrac{CA}{CE}=\dfrac{1}{2}\)
⇒ BC // DE ( 2 )
Từ ( 1) và ( 2) có: DE // BC (cmt) và DI // BC (cmt)
Ta thấy qua điểm D nằm ngoài BC kẻ được 2 đường thẳng song song với BC, điều này trái với tiên đề Ơ-clít nên hai đường thẳng DE và DI phải trùng nhau
⇒ D, I, E cùng nằm trên một đường thẳng
⇒ D, I, E thẳng hàng
1) Xét ΔADI có
B là trung điểm của AD(gt)
M là trung điểm của AI(gt)
Do đó: BM là đường trung bình của ΔADI(Định nghĩa đường trung bình của tam giác)
Suy ra: BM//DI(Định lí 2 về đường trung bình của tam giác)
hay DI//BC
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4
a) Xét tam giác ABC và tam giác AED có :
\(\widehat{A}\)chung
\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)
Suy ra tam giác ABC ~ tam giác AED ( c-g-c )
b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)
c) Xét tam giác ADC và tam giác AEB có :
\(\widehat{A}\)chung
\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)
Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )
\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)
Xét tam giác KCE và tam giác KDB có :
\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)
\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)
Suy ra tam giác KCE ~ tam giác KDB ( g-g )
Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)
Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)
Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)
Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)
Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)
\(\RightarrowĐPCM\)