K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Hình vẽ:
Trường hợp đồng dạng thứ ba

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:
Xét tam giác $BDC$ và $ABC$ có:

$\widehat{BDC}=\widehat{ABC}$ (gt)

$\widehat{C}$ chung

$\Rightarrow \triangle BDC\sim \triangle ABC$ (g.g)

$\Rightarrow \frac{BD}{AB}=\frac{DC}{BC}=\frac{BC}{AC}$

$\Rightarrow BC^2=AC.DC=(AD+DC).DC=(7+9).9=144$

$\Rightarrow BC=12$

$\Rightarrow \frac{BD}{AB}=\frac{DC}{BC}=\frac{9}{12}=\frac{3}{4}$

16 tháng 3 2017

ai bt làm ko chỉ mik với

15 tháng 7 2021

a) Ta có:    \(\dfrac{AB}{AD}=\dfrac{AM}{AI}=\dfrac{1}{2}\)

 ⇒   DI  //  BM

mà M ∈ BC ⇒ DI // BC  ( 1 )

b)  Ta có:   \(\dfrac{BA}{AD}=\dfrac{CA}{CE}=\dfrac{1}{2}\)

⇒     BC  //   DE     ( 2 )

Từ ( 1) và ( 2) có: DE // BC (cmt) và DI // BC (cmt)

    Ta thấy qua điểm D nằm ngoài BC kẻ được 2 đường thẳng song song với BC, điều này trái với tiên đề Ơ-clít nên hai đường thẳng DE và DI phải trùng nhau

⇒    D, I, E cùng nằm trên một đường thẳng

⇒    D, I, E thẳng hàng

1) Xét ΔADI có 

B là trung điểm của AD(gt)

M là trung điểm của AI(gt)

Do đó: BM là đường trung bình của ΔADI(Định nghĩa đường trung bình của tam giác)

Suy ra: BM//DI(Định lí 2 về đường trung bình của tam giác)

hay DI//BC

 

12 tháng 3 2016

1) coi lại đề

2) a) tam giác ABD và tam giác ABC có

góc A=góc A, góc ABD=góc ACB

=> tam giác ABD đồng dạng tam giác ACB (g-g)

b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO

A B C D E K

a) Xét tam giác ABC và tam giác AED có :

 \(\widehat{A}\)chung

\(\frac{AB}{AE}=\frac{AC}{AD}\left(=\frac{1}{2}\right)\)

Suy ra tam giác ABC ~ tam giác AED ( c-g-c )

b) Từ tam giác ABC ~ tam giác ADE (cmt) ta có :

\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{1}{2}\Rightarrow ED=2BC=2\cdot7=14\left(cm\right)\)

c) Xét tam giác ADC và tam giác AEB có :

\(\widehat{A}\)chung

\(\frac{AD}{AE}=\frac{AC}{AB}\left(=\frac{4}{3}\right)\)

Suy ra tam giác ADC ~ tam giác AEB ( c-g-c )

\(\Rightarrow\widehat{BDK}=\widehat{CEK}\)

Xét tam giác KCE và tam giác KDB có :

\(\widehat{BKD}=\widehat{CKE}\)(2 góc đối đỉnh)

\(\widehat{BDK}=\widehat{CEK}\left(cmt\right)\)

Suy ra tam giác KCE ~ tam giác KDB ( g-g )

Từ tam giác ABC ~ tam giác AED (cmt) suy ra \(\widehat{ABC}=\widehat{AED}\)

Từ tam giác KCE ~ tam giác KDB (cmt) suy ra \(\widehat{KBD}=\widehat{KCE}\)

Ta có \(\widehat{CDE}=180"-\widehat{CED}-\widehat{DCE}=180"-\widehat{ABC}-\widehat{DBK}\)(1)

Lại có \(\widehat{CBE}=180"-\widehat{ABC}-\widehat{DBK}\)(2)

Từ (1) và (2) suy ra \(\widehat{CBE}=\widehat{CDE}\)

\(\RightarrowĐPCM\)