K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

giải giup minh bai nay voi cac bn oi !

2 so tu nhien a va 4a co tong cac chu so bang nhau . chung minh rang a chia het cho 3 ! ai giai chinh xac , nhanh va day du nhat , minh se co qua cho !bucminh trời ơi ! quên mất đây là cho gửi trả lời mà ! thoy kệ !

3! là 3 giai thừa hả

11 tháng 12 2023

a: M(4;0) là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot4=8\\y_A+y_B=2\cdot0=0\end{matrix}\right.\)

N(5;2) là trung điểm của AC 

=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot5=10\\y_A+y_C=2\cdot2=4\end{matrix}\right.\)

P(2;3) là trung điểm của BC

=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot2=4\\y_B+y_C=2\cdot3=6\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_A+x_B=8\\x_A+x_C=10\\x_B+x_C=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_B-x_C=8-10=-2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_B=-2+4=2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_B=\dfrac{2}{2}=1\\x_C=4-1=3\\x_A=10-3=7\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_A+y_B=0\\y_A+y_C=4\\y_B+y_C=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y_B-y_C=-4\\y_B+y_C=6\\y_A+y_B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y_B=2\\y_B+y_C=6\\y_A=-y_B\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y_B=1\\y_C=6-1=5\\y_A=-1\end{matrix}\right.\)

Vậy: A(7;-1);B(1;1); C(3;5)

b: A(7;-1); P(2;3)

\(AP=\sqrt{\left(2-7\right)^2+\left(3+1\right)^2}=\sqrt{\left(-5\right)^2+4^2}=\sqrt{41}\)

c: A(7;-1)

Tọa độ điểm đối xứng với A qua trục Ox là:

\(\left\{{}\begin{matrix}x=x_A=7\\y=-y_A=1\end{matrix}\right.\)

Tọa độ điểm đối xứng với A qua trục Oy là:

\(\left\{{}\begin{matrix}x=-x_A=-7\\y=y_A=-1\end{matrix}\right.\)

e: E thuộc Ox nên E(x;0)

N(5;2);P(2;3); E(x;0)

\(\overrightarrow{NP}=\left(-3;1\right);\overrightarrow{NE}=\left(x-5;-2\right)\)

Để N,P,E thẳng hàng thì \(\dfrac{x-5}{-3}=\dfrac{-2}{1}\)

=>x-5=6

=>x=11

Vậy: E(11;0)

8 tháng 4 2020

trl ; bạn kia đúng r

-

_

----------------

NV
25 tháng 3 2021

Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt

Phương trình BC: 

\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\)  \(\Rightarrow B\left(2;2\right)\)

Phương trình đường thẳng d qua C và vuông góc BN có dạng:

\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)

Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)

Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB

\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt

Phương trình AB: 

\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)

A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\)  \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)

a: E đối xứng A qua B

=>B là trung điểm của AE

=>\(\left\{{}\begin{matrix}x_A+x_E=2\cdot x_B\\y_A+y_E=2\cdot y_B\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E+1=2\cdot\left(-2\right)=-4\\y_E+2=2\cdot6=12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E=-4-1=-5\\y_E=10\end{matrix}\right.\)

Vậy: E(-5;10)

b: A(1;2); B(-2;6); C(9;8)

\(AB=\sqrt{\left(-2-1\right)^2+\left(6-2\right)^2}=\sqrt{3^2+4^2}=5\)

\(AC=\sqrt{\left(9-1\right)^2+\left(8-2\right)^2}=\sqrt{8^2+6^2}=10\)

\(BC=\sqrt{\left(9+2\right)^2+\left(8-6\right)^2}=\sqrt{11^2+2^2}=\sqrt{125}=5\sqrt{5}\)

Vì \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

Xét ΔCAB có CI là phân giác

nên \(\dfrac{IA}{IB}=\dfrac{CA}{CB}=\dfrac{10}{5\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

=>\(\dfrac{IA}{IB+IA}=\dfrac{2}{2+\sqrt{5}}\)

=>\(\dfrac{IA}{BA}=\dfrac{2}{\sqrt{5}+2}\)

=>\(AI=2\left(\sqrt{5}-2\right)\cdot AB\)

\(\overrightarrow{AI}=\left(x-1;y-2\right);\overrightarrow{AB}=\left(-3;4\right)\)

I nằm giữa A và B nên \(\overrightarrow{AI};\overrightarrow{AB}\) cùng hướng

=>\(\overrightarrow{AI}=\left(2\sqrt{5}-4\right)\cdot\overrightarrow{AB}\)

=>\(\left\{{}\begin{matrix}\left(x-1\right)=\left(2\sqrt{5}-2\right)\cdot\left(-3\right)=-6\sqrt{5}+6\\y-2=\left(2\sqrt{5}-2\right)\cdot4=8\sqrt{5}-8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-6\sqrt{5}+7\\y=8\sqrt{5}-6\end{matrix}\right.\)

4 tháng 12 2023

a) Để tìm tọa độ điểm E đối xứng với A qua B, ta sử dụng công thức tọa độ điểm đối xứng:
- X = 2x' - x
- Y = 2y' - y

Với A(1, 2) và B(-2, 6), ta có:
- X = 2 * (-2) - 1 = -5
- Y = 2 * 6 - 2 = 10

Vậy tọa độ của điểm E là E(-5, 10).

b) Để tìm tọa độ điểm I chân đường phân giác trong tại đỉnh C của tam giác ABC, ta sử dụng công thức:
- X = (ax + cx) / 2
- Y = (ay + cy) / 2

Với A(1, 2), B(-2, 6) và C(9,😎, ta có:
- X = (1 + 9) / 2 = 5
- Y = (2 +😎 / 2 = 5

Vậy tọa độ của điểm I là I(5, 5).

M(x1;8x1+3); B(1/8y1+3/8;y1); N(x2;14/13x2-9/13); C(13/14y2+9/14; y2)

Theo đề, ta có: (13/14y2+4+9/14)=2x1 và y2-1=16x1+6

=>x1=13/90 và y2=-211/45

=>M(13/90; 187/45); C(-167/45; -211/45)

Theo đề, ta có:

1/8y1+3/8+4=2x2 và y1-1=2(14/13x2-9/13)

=>2x2-1/8y1=35/8 và 28/13x2-y1=-1+18/13=5/13

=>x2=5/2; y1=5

=>N(5/2;2); B(1/2;5)