K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Chọn đáp án D.

28 tháng 1 2019

Đáp án D.

13 tháng 12 2019

Đáp án A.

 

Áp dụng bđt Bunhiacopski:

P=6+4=10.

19 tháng 12 2017

z + 2 + i - z 1 + i = 0

z = - 2 + z + - 1 + z i

z = t > 0 ⇒ t = t - 2 2 + t - 1 2

⇔ t 2 - 6 t + 5 = 0 ⇔ t = 1 ; t = 5

Ta có t = 5 ( do t > 1 ) nên có 

z = - 2 + z + - 1 + z i

= -2 + 5 + ( -1 + 5 )i = 3 + 4i

Đáp án cần chọn là D

2 tháng 5 2017

15 tháng 10 2017

Chọn đáp án B.

6 tháng 12 2018

Đáp án D

11 tháng 1 2018

Đáp án D.

Gọi   M a ; b là điểm biểu diễn số phức z = a + b i . Đặt I = 1 ; 1   , A 7 ; 9  và   B 0 ; 8

Ta xét bài toán: Tìm điểm M thuộc đường tròn   C có tâm I, bán kính   R = 5 sao cho biểu thức P = M A + 2 M B  đạt giá trị nhỏ nhất.

Trước tiên, ta tìm điểm K x ; y  sao cho  M A = 2 M K   ∀ M ∈ C   .

Ta có  

  M A = 2 M K ⇔ M A 2 = 4 M K 2 ⇔ M I → + I A → 2 = 4 M I → + I K → 2

⇔ M I 2 + I A 2 + 2 M I → . I A → = 4 M I 2 + I K 2 + 2 M I → . I K →

⇔ 2 M I → I A → − 4 I K → = 3 R 2 + 4 I K 2 − I A 2   *

(*) luôn đúng ∀ M ∈ C ⇔ I A → − 4 I K → = 0 → 3 R 2 + 4 I K 2 − I A 2 = 0 .

I A → − 4 I K → = 0 → ⇔ 4 x − 1 = 6 4 y − 1 = 8 ⇔ x = 5 2 y = 3

Thử trực tiếp ta thấy  K 5 2 ; 3    thỏa mãn 3 R 2 + 4 I K 2 − I A 2 = 0 .

Ta cos  M A + 2 M B = 2 M K + 2 M B = 2 M K + M B ≥ 2 K B   .

Vì B I 2 = 1 2 + 7 2 = 50 > R 2 = 25  nên B nằm ngoài (C).

Vì K I 2 = 3 2 2 + 2 2 < R 2 = 25  nên K nằm trong (C)  .

Dấu bằng trong bất đẳng thức trên xảy ra khi và chỉ khi M thuộc đoạn thẳng BK  . Do đó  M A + 2 M B  nhỏ nhất khi và chỉ khi M là giao điểm của (C) và đường thẳng BK.

Phương trình đường thẳng B K : 2 x + y − 8 = 0 .

Phương trình đường tròn C : x − 1 2 + y − 1 2 = 25 .

Tọa độ điểm M là nghiệm của hệ

2 x + y = 8 x − 1 2 + y − 1 2 = 25 ⇔ x = 1 y = 6

 hoặc x = 5 y = − 2 .

Thử lại thấy M 1 ; 6  thuộc đoạn BK.

Vậy  a = 1, b = 6 ⇒ a + b = 7   .

20 tháng 4 2017

Đáp án D

z + 2 + i − z ( 1 + i ) = 0 ⇔ ( a + b i ) + 2 + i − a 2 + b 2 ( 1 + i ) = 0 ⇔ a + 2 − a 2 + b 2 + ( b + 1 − a 2 + b 2 ) i = 0 ⇒ a + 2 − a 2 + b 2 = 0 b + 1 − a 2 + b 2 = 0 ⇒ a − b + 1 = 0 ⇒ a = b − 1 ⇒ b + 1 − ( b − 1 ) 2 + b 2 = 0 ⇒ 2 b 2 − 2 b + 1 = b + 1 ⇒ b ≥ − 1 b 2 − 4 b = 0 ⇒ b = 0 b = 4 ⇒ a = − 1     ( L ) a = 3 ⇒ P = 4 + 3 = 7