Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x\) + 99: 3 = 55
\(x\) + 33 = 55
\(x\) = 55 - 33
\(x\) = 22
b, (\(x\) - 25):15 = 20
\(x\) - 25 = 20 x 15
\(x\) - 25 = 300
\(x\) = 300 + 25
\(x\) = 325
c, (3\(x\) - 15).7 = 42
3\(x\) - 15 = 42:7
3\(x\) - 15 = 6
3\(x\) = 6 + 15
3\(x\) = 21
\(x\) = 21: 3
\(x\) = 7
Bài 1 :
a)
Chứng minh chiều \("\Rightarrow"\) :
Ta có : \(abcd⋮99\Rightarrow ab.100+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
Mà : \(99ab⋮99\Rightarrow ab+cd⋮99\) ( đpcm )
Chứng minh chiều \("\Leftarrow"\) :
Ta có : \(ab+cd⋮99\)
\(\Rightarrow99ab+ab+cd⋮99\)
\(\Rightarrow100ab+cd⋮99\)
hay : \(abcd⋮99\) ( đpcm )
b) Ta có :
\(abcd=1000a+100b+10c+d\)
\(=100ab+cd\)
\(=200cd+cd=201cd\)
Mà \(201⋮67\Rightarrow ab=2cd⋮67\) ( đpcm )
c) Gọi số tự nhiên ba chữ số đó là \(aaa\)
Ta có : \(aaa=a.111=a.37.3⋮37\)
\(\Rightarrow\) Mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37 ( đpcm )
a, 245 - 5 . ( 16 + x ) = 140
5 . ( 16 + x ) = 245 - 140
5 . ( 16 + x ) = 145
16 + x = 145 : 5
16 + x = 29
x = 29 - 16
x = 13 .
b, ( x - 1945 ) . 5 = 50
x - 1945 = 50 : 5
x - 1945 = 10
x = 10 + 1945
x = 1955 .
c, 30 . ( 60 - x ) = 30
60 - x = 30 : 30
60 - x = 1
x = 60 - 1
x = 59 .
d, [ ( 250 - 25 ) : 15 ] : x = ( 450 - 60 ) : 130
[ 225 : 15 ] : x = 390 : 130
15 : x = 3
x = 15 : 3
x = 5 .
e, x : [ ( 1800 + 600 ) ] = 560 : ( 315 - 35 )
x : 2400 = 560 : 280
x : 2400 = 2
x = 2 . 2400
x = 4800 .
f, x . ( x + 1 ) = 2 + 4 + 6 + 8 + 10 + ... + 2500
2 + 4 + 6 + 8 + 10 + ... + 2500
Số số hạng của dãy số trên là :
( 2500 - 2 ) : 2 + 1 = 1250 ( số hạng )
=> 2 + 4 + 6 + 8 + 10 + 2500
= ( 2 + 2500 ) . 1250 : 2
= 2502 . 1250 : 2
= 3127500 : 2
= 1563750 .
Ta có :
x . ( x + 1 ) = 1563750
Mà : 1563750 = 1250 . 1251
=> x = 1250 .
\(a,3\cdot x-15=x+35\)
\(\Rightarrow3x-x=35+15\)
\(\Rightarrow 2x=50\)
\(\Rightarrow x = 50:2\)
\(\Rightarrow x= 25\)
\(b,(8x-16)(x-5)=0\)
\(+, TH1: 8x-16=0\)
\(\Rightarrow8x=16\)
\(\Rightarrow x = 16:8\)
\(\Rightarrow x=2\)
\(+,TH2: x-5=0\)
\(\Rightarrow x =5\)
\(c,x(x+1)=2+4+6+8+10+...+2500\) \(^{\left(1\right)}\)
Đặt \(A=2+4+6+8+10+...+2500\)
Số các số hạng của \(A\) là: \(\left(2500-2\right):2+1=1250\left(số\right)\)
Tổng \(A\) bằng: \(\left(2500+2\right)\cdot1250:2=1563750\)
Thay \(A=1563750\) vào \(^{\left(1\right)}\), ta được:
\(x\left(x+1\right)=1563750\)
\(\Rightarrow x\left(x+1\right)=1250\cdot1251\)
\(\Rightarrow x =1250\)
#\(Toru\)