Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhóm (5+52+53) lại rồi tiếp tục nhóm các số còn lại như vậy ta sẽ có thừa số chung là 31 và chia hết cho 31
đầy đủ S= (5+52+53)+ .....+( 52014+52015+52016)
= 5( 1+5+52)+.....+52014( 1+5+52)
= (5+...+52014 ) ( 1+5+52)
= (5+...+52014)31 chia hết cho 31
S = 5 + 52 + 53 + 54 +.........+ 52016
S = ( 5 + 52 + 53 )+( 54 + 55 + 56 )+...........+ ( 52014 + 52015 +5 2016)
S = 5 * (1+ 5 +52 )+ 54 * (1+5+52) + .........+ 52014 * (1 + 5 + 52 )
S = 5 * 31 + 54 * 31 + .........+ 22014 * 31
S = 31 * (5 + 54 + .........+ 52014 )
Vì trong tích có thừa số chia hết cho 31 nên tích đó chia hết cho 31
a) Ta có \(S=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{97}.15\)
\(=\left(2+2^5+...+2^{97}\right).15\)
Vậy nên \(S⋮15\)
b) Ta thấy \(2+2^5+...+2^{97}=2\left(1+2^4+...+2^{96}\right)⋮2;15⋮5\)
Vậy nên \(S⋮10\) hay chữ số tận cùng của S là 0.
a) S = 3 + 32 + ... + 31998
=> S = ( 3 + 32 ) + ... + ( 31997 + 31998 )
=> S = ( 3 + 9 ) + ... + 31996 . ( 3 + 32 )
=> S = 12 + ... + 31996 . 12
=> S = ( 1 + ... + 31996 ) . 12 chia hết cho 12
=> S chia hết cho 12
b) S = 3 + 32 + ... + 31998
=> S = ( 3 + 32 + 33 ) + ... + ( 31996 + 31997 + 31998 )
=> S = 39 + ... + 31995 . ( 3 + 32 + 33 )
=> S = 39 + ... + 31995 . 39
=> S = ( 1 + ... + 31995 ) . 39 chia hết cho 39
=> S chia hết cho 39
\(S=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8\right)+...+2^{96}.\left(1+2+2^2+2^3\right)\)
\(=15+...+2^{96}.15\)
\(=15.\left(1+...+2^{96}\right)⋮15\)
\(\Rightarrow\) \(S⋮15\)
\(S=5+5^2+5^3+5^4+...+5^{2022}\\ =\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{2020}.\left(5+5^2\right)\\ =30+30.5^2+...+30.5^{2020}\\ =30.\left(1+5^2+...+5^{2020}\right)⋮30\)
\(S=5+5^2+5^3+...+5^{2022}\)
\(\Rightarrow S=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2000}\left(5+5^2\right)\)
\(\Rightarrow S=20+5^2.20+...+5^{2000}.20\)
\(\Rightarrow S=20\left(1+5^2+...+5^{2000}\right)⋮20\)
\(\Rightarrow dpcm\)
B = 5 + 5² + 5³ + ... + 5⁹⁰
= (5 + 5² + 5³) + (5⁴ + 5⁵ + 5⁶) + ... + (5⁸⁸ + 5⁸⁹ + 5⁹⁰)
= 5.(1 + 5 + 5²) + 5⁴.(1 + 5 + 5²) + ... + 5⁸⁸.(1 + 5 + 5²)
= 5.31 + 5⁴.31 + ... + 5⁸⁸.31
= 31.(5 + 5⁴ + ...+ 5⁸⁸) ⋮ 31
Vậy B ⋮ 31
\(B=5+5^2+5^3+...+5^{89}+5^{90}\)
Ta có: \(B=\left(5+5^2+5^3\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)
\(B=155+...+5^{87}.\left(5+5^2+5^3\right)\)
\(B=155+...+5^{87}.155\)
\(B=155.\left(1+...+5^{87}\right)\)
Vì \(155⋮31\) nên \(155.\left(1+...+5^{87}\right)⋮31\)
Vậy \(B⋮31\)
\(#WendyDang\)
Nhận xét : số chính phương chia 3 dư 0 hoặc 1
+, Nếu x và y đều ko chia hết cho 3 => x^2 và y^2 đều chia 3 dư 1
=> x^2+y^2 chia 3 dư 2 ( ko t/m )
+, Nếu trong 2 số có 1 số chia hết cho 3 , 1 số ko chia hết cho 3
=> x^2+y^2 chia 3 dư 1 ( ko t/m )
Vậy để x^2+y^2 chia hết cho 3 thì x và y đều chia hết cho 3
Tk mk nha
S = 2 + 22 + ... + 2150
= ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 ) + ... + ( 2146 + 2147 + 2148 + 2149 + 2150 )
= 2.(1+2+22+23+24) + 26.(1+2+22+23+24) + ... + 2146(1+2+22+23+24)
= 2.31 + 26.31 + ... + 2146.31
= 31.(2+26+...+2146) chia hết cho 31