Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
abcde(ngang) chia hết cho 7 ⇔ (khó viết dấu ngoặc lắm). Bạn cứ dựa vào ssau hiệu chia hết 7 mà chứng minh :
Lấy chữ số đầu tiên nhân với 3 rồi cộng thêm chữ số tiếp theo, được bao nhiêu lại nhân với 3 rồi cộng thêm chữa số tiếp theo… cứ như vậy cho đến chữ số cuối cùng. Nếu kết quả cuối cùng này chia hết cho 7 thì số đó chia hết cho 7.
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
a) Đúng vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
b) Sai vì số tự nhiên chia hết cho 2 có chữ số tận cùng là 0; 2; 4; 6; 8
c) Sai vì số chia hết cho 5 thì có chữ số tận cùng bằng 0 và 5
d) Đúng
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321
a) Ta có \(S=2+2^2+2^3+...+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2.15+2^5.15+...+2^{97}.15\)
\(=\left(2+2^5+...+2^{97}\right).15\)
Vậy nên \(S⋮15\)
b) Ta thấy \(2+2^5+...+2^{97}=2\left(1+2^4+...+2^{96}\right)⋮2;15⋮5\)
Vậy nên \(S⋮10\) hay chữ số tận cùng của S là 0.