K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

S=2+22+23+...+2100

=(2+22+23+24)+...+(297+298+299+2100)

=2.(1+2+22+23)+...+297.(1+2+22+23)

=2.15+...+297.15

=15.(2+...+297) chia hết cho 15       đpcm

9 tháng 12 2016

A=2+2^2+2^3+...+2^100

  = (2+2^2+2^3+2^4)+...(2^97+2^98+2^99+2^100)

  =2(1+2+2^2+2^3)+....+2^97(1+2+2^2+2^3)

  = 2.15 +.....+2^97.15

  =(2+....+2^97).15 chia hết cho 15

9 tháng 12 2016

S = 21 + 22 + 23 + 24 + .... + 2100

S = ( 21 + 22 + 23 + 24 + .... + ( 297 + 298 + 299 + 2100 )

S = 2 . ( 1 + 2 + 4 + 8 ) +.... + 297 . ( 1 + 2 + 4 + 8 )

S = 2 . 15 + ... + 297 . 15

S = ( 2 + ... + 297 ) . 15

Mà 15 chia hết cho 15 suy ra S chia hết cho 15

12 tháng 11 2018

LBDRA^bb

S=2+22+23+...+2100

S=(2+22)+(23+24)+....+(299+2100)

S=6+22(23+24)+....+298(2+22)

S=1.6+22.6+...+298.6  

S=6.(1+22+....+296)    chia hết cho 3

S=2+22+23+...+2100

S=(2+22+23+24)+....+(297+298+299+2100)

S=30+.....+296(2+22+23+24)

S=1.30+....+296.30

S=30.(1+....+296)     chia hết cho 15

10 tháng 3 2020

a,2 + 2^2 + 2^3 + ... + 2^100

<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)

<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)

<=>2.3 + 2^3.3 +...+2699.3

<=>3.(2+2^3+....+2^99)

=> S chia hết cho 3

7 tháng 5 2019

Giải:

A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3

Câu b tương tự

2 tháng 8 2019

A- 2 + 22 +2 +............+2100

<=> A= (2 + 22) +(23 + 240 +....+(299+2100)

<=>A=6+22.6+.....+298:6

<=>A=6.(22+.......298) :3

4 tháng 8 2015

a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6 

b) Tương tự a 

c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0 

Nhớ ticks đúng cho mình nhé

 

 

4 tháng 8 2015

a) S = 2 + 22 + 23 + 24 + .... + 2100

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )

= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )

= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )

= 6 + 22 . 6 + .... + 298 . 6

= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )

7 tháng 11 2015

\(S=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{102}+2^{103}\right)=3.2^0+3.2^2+.....+2^{102}.3=3.\left(2^0+2^2+....+2^{102}\right)\)

Vậy S chia hết chp 3 (đpcm)    

S=1+2+22+23+.....+297+298+299

S=20+2+22+23+.....+297+298+299

2S=2.(20+2+22+23+.....+297+298+299)

2S=21+22+23+24+....+298+299+2100

2S-S=(21+22+23+24+....+298+299+2100)-(20+2+22+23+.....+297+298+299)

S=2100-20

S=2100-1

bS=1+2+22+23+.....+297+298+299

 S=(1+2)+(22+23)+...+(296+297)+(298+299)

S=(1+2)+22.(1+2)+........+296.(1+2)+298.(1+2)

S=3+22.3+....+296.3+298.3

S=3.(1+22+.....+296+298)\(⋮\)3

Vậy S\(⋮\)

c Ta có:S=2100-1

2100=24.25=(24)25

Ta có: 24 tân cùng là 6

=>(24)25 tận cùng là 6

Hay 2100=(24)25 tận cùng là 6

=>2100-1 tận cùng là 5

Vậy S tận cùng là 5

Chúc bn học tốt