K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

A=2+2^2+2^3+...+2^100

  = (2+2^2+2^3+2^4)+...(2^97+2^98+2^99+2^100)

  =2(1+2+2^2+2^3)+....+2^97(1+2+2^2+2^3)

  = 2.15 +.....+2^97.15

  =(2+....+2^97).15 chia hết cho 15

9 tháng 12 2016

S = 21 + 22 + 23 + 24 + .... + 2100

S = ( 21 + 22 + 23 + 24 + .... + ( 297 + 298 + 299 + 2100 )

S = 2 . ( 1 + 2 + 4 + 8 ) +.... + 297 . ( 1 + 2 + 4 + 8 )

S = 2 . 15 + ... + 297 . 15

S = ( 2 + ... + 297 ) . 15

Mà 15 chia hết cho 15 suy ra S chia hết cho 15

12 tháng 11 2018

LBDRA^bb

24 tháng 10 2016

S=2+22+23+...+2100

=(2+22+23+24)+...+(297+298+299+2100)

=2.(1+2+22+23)+...+297.(1+2+22+23)

=2.15+...+297.15

=15.(2+...+297) chia hết cho 15       đpcm

2 tháng 10 2015

S = 21+22+23+...+2100

S = (2+22+23+24) + (25+26+27+28) +.....+ (297+298+299+2100)

S = 2(1+2+22+23) + 25(1+2+22+23) +.....+ 297(1+2+22+23)

S = 2.15 + 25.15 +.....+ 297.15

S = 15.(2+25+...+297) chia hết cho 15

=> Đpcm

8 tháng 9 2015

S = (21+22)+(23+24)+...+(299+2100)

S = 2.(1+2)+23.(1+2)+...+299.(1+2)

S = 2.3+23.3+...+299.3

S = 3.(2+23+...+299)

=> S chia hết cho 3

S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)

S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)

S = 2.15+25.15+...+297.15

S = 15.(2+25+...+297)

=> S chia hết cho 15

5 tháng 1 2017

Bài dễ ợt ai mà chẳng làm được

S=2+22+23+...+2100

S=(2+22)+(23+24)+....+(299+2100)

S=6+22(23+24)+....+298(2+22)

S=1.6+22.6+...+298.6  

S=6.(1+22+....+296)    chia hết cho 3

S=2+22+23+...+2100

S=(2+22+23+24)+....+(297+298+299+2100)

S=30+.....+296(2+22+23+24)

S=1.30+....+296.30

S=30.(1+....+296)     chia hết cho 15

10 tháng 3 2020

a,2 + 2^2 + 2^3 + ... + 2^100

<=> (2+2^2) + (2^3+2^4) + .... + (2^99+2^100)

<=> 2.(1+2) + 2^3.(1+2) +.....+ 2^99.(1+2)

<=>2.3 + 2^3.3 +...+2699.3

<=>3.(2+2^3+....+2^99)

=> S chia hết cho 3