Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a \(4S=4+4^2+4^3+...+4^{24}\)
\(S=\frac{4S-S}{3}=\frac{4^{24}-1}{3}\)
b/ Xem lại đề bài\(3S=4^{6x}-1=4^{24}-1\Rightarrow6x=24\Rightarrow x=4\)
B = 1 + 4 + 42 +...+ 4200 + 4201
=> 4B = 4 + 42 +43 +...+ 4201 + 4202
=> 4B-B = 4202 - 1
3B = 4202 -1
\(\Rightarrow B=\frac{4^{202}-1}{3}\)
4B = 4 + 4^2 + 4^3 + ... + 4^202
4B - B = ( 4 + 4^2 + 4^3 + ... + 4^202 ) - ( 1 + 4 + 4^2 + ... + 4^201 )
3B = 4^202 - 1
B = \(\frac{4^{202}-1}{3}\)
Bạn có chép sai đề bài k ?? sao lại 4 + 4 mũ 3 mà ở cuối lại mà 4 mũ 200 + 4 mũ 201
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
S=30+32+34+36+...+32020
32.S=32+34+36+...+32020+32021
9S-S=(32+34+36+...+32020+32021)-(30+32+34+36+...+32020)
8S=32021-30
\(S=\frac{3^{2021}-1}{8}\)
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
Ta có \(S=2+2^3+...+2^{99}\)
\(\Rightarrow2S=2^2+2^4+2^5+...+2^{100}\)
\(\Rightarrow2S=S-6+2^{100}\)
\(\Rightarrow S=2^{100}-6=2\left(2^{99}-3\right)\)
Ta thấy 24k có tận cùng là 6; 24k+1 có tận cùng là 2; 24k+2 có tận cùng là 4; 24k+3 có tận cùng là 8.
Mà 99 = 4.24 + 3 nên 299 có tận cùng là 8. Vậy thì 299 - 3 có tận cùng là 5 nên chia hết cho 5.
Tóm lại S chia hết cho 10 và 5.
2S=2.(22 + 23 + 24+ ... + 22017 + 22018)
2S=23 + 24+ ... + 22017 + 22018+22019
S=23 + 24+ ... + 22017 + 22018+22019-22 + 23 + 24+ ... + 22017 + 22018
S=22019-22