Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)
\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)
a) S= 1+31 +32 +33 +............+398
S=(1+ 3+ 32) +...............+ (396 +397 +398)
S= 13+..............+396x(1+3+33)
S= 13+...............+396x13
S=13x(1+..........396)
Vì 13x(1+...........396) : 13 thì hết nên => S chia hết cho 13
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
a) Ta có: \(S=1+3+3^2+3^3+...+3^{98}\)
\(3S=3+3^2+3^3+3^4+...+3^{99}\)
\(3S-S=3^{99}-1\)
Hay \(2S=3^{99}-1\)
\(\Rightarrow S=\frac{3^{99}-1}{2}\)
b) Ta có: \(2S=3^{5x-1}-1\)
\(\Rightarrow3^{99}-1=3^{5x-1}-1\)
\(\Rightarrow3^{99}=3^{5x-1}\)
\(\Rightarrow5x-1=99\)
\(\Rightarrow5x=100\)
\(\Rightarrow x=20\)
Hok tốt nha^^
a, S = 1 + 3 + 32 + 33+.....+398
3S = 3 + 32 + 33+......+ 398+ 399
3S- S = 399 - 1
2S = 399 - 1
S = ( 399-1):2
b, S = 1 + 3 + 32 + 33 +......+398
S = 1 + ( 3 + 32 + 33) + ( 34 + 35 + 36) + .....+ (396+397+398)
S = 1 + 3.( 1 + 3 + 32) + 34.( 1 + 3 + 32) +.....+ 396.( 1 + 3 + 32)
S = 1 + 3. 13 + 34.13 + ......+396.13
S = 1 + 13. ( 3 + 34 + ......+ 396)
vì 13 ⋮ 13 ⇔ 13 .( 3 + 34+.....+396) ; 1 \(⋮̸\) 13
⇔ S = 1 + 13 .( 3 + 34+.....+396) \(⋮̸\) 13 (đpcm)
c, ta có S = ( 399-1): 2
⇔ 2S = 399 - 1
⇔ 2S = (34)24. 33- 1
⇔ 2S = \(\overline{...1}\) . 27 - 1
⇔ 2S = \(\overline{....7}\) - 1
⇔ 2S = \(\overline{....6}\)
vì 2 . 3 = 6; và 2 . 8 = 16 ⇔ \(\left[{}\begin{matrix}S=\overline{...3}\\S=\overline{....8}\end{matrix}\right.\)
vậy S không thể là số chính phương vì số chính phương không có tận cùng là 2; 3; 7; 8 (đpcm)