K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

1 D = (x-1)2 + x = 1.

    =>x2-x+1 +x=1

    =>x2+1=1

    =>x2=0 => x=0

26 tháng 8 2018

\(D=\left(x-1\right)^2+x\)

\(D=1\)  =>   \(\left(x-1\right)^2+x=1\)

<=>  \(\left(x-1\right)^2+x-1=0\)

<=>  \(\left(x-1\right)\left(x-1+1\right)=0\)

<=>  \(x\left(x-1\right)=0\)

<=>  \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy...

Bài 2:   thiếu đề

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)

18 tháng 5 2019

\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

\(\Leftrightarrow\)\(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\ge0\)

\(\Leftrightarrow\frac{4x^4y^4+x^4\left(x^2+y^2\right)^2+y^4\left(x^2+y^2\right)^2-3x^2y^2\left(x^2+y^2\right)^2}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)

\(\Leftrightarrow4x^4y^4+x^4\left(x^4+2x^2y^2+y^4\right)+y^4\left(x^4++2x^2y^2+y^4\right)-3x^2y^2\left(x^4+2x^2y^2+y^4\right)\ge0\)

\(\Leftrightarrow4x^4y^4+x^8+2x^6y^2+x^4y^4+x^4y^4+2x^2y^6+y^8-3x^6y^2-6x^4y^4-3x^2y^6\ge0\)

\(\Leftrightarrow x^8+y^8-x^6y^2-x^2y^6\ge0\)

\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\)( luôn đúng )

=> \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)

Dấu " = " xảy ra <=> x=y

4 tháng 6 2023

Ta có \(27=xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow9\ge\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow729\ge\left(xyz\right)^2\) \(\Leftrightarrow27\ge xyz\) \(\Leftrightarrow27\left(xyz\right)^2\ge\left(xyz\right)^3\) \(\Leftrightarrow\sqrt{3}\sqrt[3]{xyz}\ge\sqrt{xyz}\) (lấy căn bậc 6 2 vế) \(\Leftrightarrow3\sqrt[3]{xyz}\ge\sqrt{3xyz}\)

Do đó \(x+y+z\ge3\sqrt[3]{xyz}\ge\sqrt{3xyz}\). ĐTXR \(\Leftrightarrow x=y=z=3\) 

20 tháng 6 2015

\(VT-VP=\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)

\(=\frac{ab+b^2+a^2+ab-4ab}{ab\left(a+b\right)}=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

Do a,b>0 nên ab(a+b)>0 và (a-b)2 >=0

=> VT-VP>=0 nên \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(dpcm\right)\)

Dấu đẳng thức xảy ra khi VT-VP=0 tức là (a-b)2 =0 => a=b

20 tháng 6 2015

Ta có:a2+b2>2ab

=>a2+2ab+b2>4ab

=>(a+b)2>4ab

=>\(\frac{ab}{a+b}\ge\frac{4}{a+b}\)

=>\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra <=>a=b

12 tháng 10 2017

Gọi M là trung điểm của AC, ta có:

\(GE\le GM+ME=\dfrac{1}{2}CD+\dfrac{1}{2}AB=\dfrac{AB+CD}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\) Ba điểm M, G, E thẳng hàng.

\(\Leftrightarrow\) GE // AB và GE // CD \(\Leftrightarrow\) AB // CD

\(\Leftrightarrow\) Tứ giác ABCD là hình thang.
A B C D E G M

12 tháng 10 2017

tks nhìu~~

6 tháng 5 2021

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:

\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\)    (1)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:

\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\)    (2)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:

\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\)    (3)

Từ (1), (2) và (3)

\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))

6 tháng 5 2021

Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều