Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
BĐT Bunnhiacopxki
Với mọi số a;b;x;y ta có:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
(ax+by)\(^{^2}\)\(\le\) (\(a^2\)+\(b^2\))(\(x^2\)+\(y^2\))
<=> \(a^2\)\(x^2\)+2axby+\(b^2\)\(y^2\)\(\le\)\(a^2\)\(x^2\)+\(a^2\)\(y^2\)+\(b^2\)\(x^2\)+\(b^2\)\(y^2\)
<=> 2axby\(\le\)\(a^2\)\(y^2\)+\(b^2\)\(x^2\)
<=>\(a^2\)\(y^2\)-2aybx+\(b^2\)\(x^2\)\(\ge\)0
<=> \(\left(ay-bx\right)^2\)\(\ge\)0(luôn đúng)
dấu = xảy ra khi ay-bx=0 <=> ay=bx
BDT Bunnhiacopxki
Với mọi số a;b;x;y ta có:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
dấu = xảy ra khi \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
câu a dễ mà mình học lớp 6 thôi
do a>0 , b> 0 nên a , b là số nguyên dương
=> để a.b=1
thì a=1
b=1
=>(1+1).(1+1)
= 2.2
=4
4 =4
=> (a+1).(b+1) \(\ge\)
bài 2 : đó là bất đẳng thức cô shi đó bạn dấu ''='' xảy ra khi a=b
câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)2 +3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0
câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)2 +3b2/2 .a=0 và b=0
Áp dụng bất đẳng thức Côsi cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\text{ }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế 2 bất đẳng thức trên, ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Dấu "=" xảy ra khi a = b = c.
Bất đẳng thức Cauchy là không đúng. Viết đúng phải là bất đẳng thức AM-GM
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)