Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Số chia 5 dư 3 thì chữ số tận cùng là 3 hoặc 8
Số chia 2 dư 1 thì chữ số tận cùng là các số lẻ
=> Số chia 5 dư 3 và chia 2 dư 1 có chữ số tận cùng là 3
=> ab = a3 chia hết cho 9 => a+3 chia hết cho 9 => a=6
Vậy số cần tìm là 63
Gọi số cần tìm là a
Ta có : a : 5 dư 3
=> a - 3 \(⋮\) 5(đk : a > 2)
Lại có a : 2 dư 1
=> a - 3 \(⋮\)2 (đk : a > 3)
=> a - 3 : 9 dư 6
Vì a - 3 \(⋮\)5 và a - 3 \(⋮\)2
=> a - 3 \(\in\)BC(5 ; 2)
mà a nhỏ nhất => a - 3 nhỏ nhất
=> a - 3 = BCNN(5 ; 2)
Lại có \(BC\left(5;2\right)=B\left(10\right)\)
=> a - 3 \(\in\left\{0;10;20;30;40;50;60;...\right\}\)
=> \(a\in\left\{3;13;23;33;43;53;63;...\right\}\)
mà a \(⋮\)9
=> a = 63 (Vì a nhỏ nhất)
Vậy số cần tìm là 63
một số không chia hết cho 3 có hai dạng \(\orbr{\begin{cases}n=3k+1\left(1\right)\\n=3k+2\left(2\right)\end{cases}}\)
Xét từng cái của (1)
\(\left(1\right)n=3k+1\)
\(\left(1\right)n=3k+1\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1=3\left(k^2+2k\right)+1=3m+1\)chia 3 dư 1 => đúng
\(\left(2\right)n=3k+2\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4=3\left(k^2+4k+1\right)+1=3m+1\) chia 3 dư 1
(1)&(2) => mọi n không chia hết cho 3 thì n^2 chia 3 dư 1.
b)Áp dụng đáp số câu (a) : P n tố >3=> p không chia hết cho 3 (nếu chia hết thì ko nguyên tố)=>p^2=3k+1
=>A= P^2+2003=(3k+1)+2003=3k+2004
A=\(\orbr{\begin{cases}k=2n..\left(k.la.so.chăn\right)\Rightarrow3k+2004=3.2.n+2004\\k=2n+1\Rightarrow3k+2004=3\left(2k+1\right)+2004=6k+2007\end{cases}}\)
2004 & 2007 cùng chia hết 3 =>A luôn chia hết cho 3=> A là hợp số
Theo lí thuyết thì: các số chia hết cho 2 là những số có những chữ số tận cùng là:0,2,4,6,8(những số chẵn)
còn những có tổng cộng lại mà chia hết cho 3 thì số đó chia hết cho 3
=>:22
Chắc vậy
sai thì thôi nha tui học lop 6 nhung quen kien thuc roi
ta có: các chữ số chia hết cho 2 phải có chữ số tận cùng là số chẵn
vậy ta có các số 2,4,6,,8,10...,96,98.
các số chia hết cho 2 mà ko chia hết cho 3 mà số chia hết cho 3 tổng của chúng phải chia hết cho 3
vậy những số nào tổng ko chia hết cho 3 trong các số trên thì là các số chia hết cho 2 nà no chia hết cho 3
a)Ta có: p2-1=(p-1).(p+1)
Vì p là số nguyên tố lớn hơn 3
=>p chia 3 dư 1 hoặc 2
*Xét p chia 3 dư 1=>p-1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3
=>p2-1 chia hết cho 3
*Xét p chia 3 dư 2=>p+1 chia hết cho 3=>(p-1).(p+1) chia hết cho 3
=>p2-1 chia hết cho 3
Vậy p2-1 chia hết cho 3
a)Ta có: p2-q2=p2-1-q2+1=(p2-1)-(q2+1)
Từ câu a
=>p2-1 chia hết cho 3
q2-1 chia hết cho 3
=>(p2-1)-(q2+1) chia hết cho 3
Vậy p2-q2 chia hết cho 3