K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

+,Nếu p chia 3 dư 1 => p+20 chia hết cho 3

Mà p+20 > 3 => p+20 là hợp số

+,Nếu p chia 3 dư 2 => p+10 chia hết cho 3

Mà p+10 > 3 => p+10 là hợp số

=> Để p;p+10;p+20 đều là các số nguyên tố thì p chia hết cho 3

=> p=3 ( vì p nguyên tố )

Khi đó : p+26 = 3+26 = 29 là số nguyên tố

=> ĐPCM

k mk nha

17 tháng 5 2015

Xét các trường hợp:

-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại

-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.

-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2

   +) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại

   +) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.

  Vậy suy ra điều phải chứng minh với p = 3

12 tháng 11 2016

sorry.I don't know

12 tháng 11 2016

a; 19,29,59

b. 889=887+3 (887 nguyen to)

c.2001.2002.2003.2004 co tan cung la 4

vay 2001.2002.2003.2004 +1 co tan cung la 5

vay (c) luon chia het cho 5= hop so

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

7 tháng 8 2018

nhanh nhé ai giãi rõ và chính xác nhất mình sẽ k đúng

7 tháng 8 2018

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Nếu p=3k+1 => p+8=3k+9 (chia hết cho 3) =>trái với đề bài

Vậy p=3k+2.

P=3k+2 => p+10=3k+12 (chia hết cho 3) => p+10 là hợp số

21 tháng 7 2015

giúp tớ chứng minh đi. chỉ mỗi câu trả lời ai hiểu

23 tháng 7 2016

xin lỗi bạn nhìn đề ko là đã hk hiểu rồi

30 tháng 10 2018

        a)

Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số 
=> p + 100 là hợp số

         b)

Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố) Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố) Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1 +)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3 +)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3 Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố. 

30 tháng 10 2018

a)
Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số 
=> p + 100 là hợp số. 
b)
Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố)
Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố)
Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1
+)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3
+)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3
Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố