Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.
Nếu p=3k+1 => p+8=3k+9 (chia hết cho 3) =>trái với đề bài
Vậy p=3k+2.
P=3k+2 => p+10=3k+12 (chia hết cho 3) => p+10 là hợp số
a; 19,29,59
b. 889=887+3 (887 nguyen to)
c.2001.2002.2003.2004 co tan cung la 4
vay 2001.2002.2003.2004 +1 co tan cung la 5
vay (c) luon chia het cho 5= hop so
a)
Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số
=> p + 100 là hợp số
b)
Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố) Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố) Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1 +)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3 +)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3 Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố.
a)
Vì p là số nguyên tố lớn hơn 3 => p thuộc dạng 3k + 1 hoặc 3k + 2.
*) Với p = 3k + 1 => p + 8 = 3k + 9 chia hết cho 3 => hợp số => vô lí vì p + 8 là số nguyên tố
*) Với p = 3k + 2 => p + 8 = 3k + 10 chia 3 dư 1 (thỏa mãn)
=> p =3k + 2 => p + 100 = 3k + 102 chia hết cho 3 => hợp số
=> p + 100 là hợp số.
b)
Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố)
Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố)
Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1
+)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3
+)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3
Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố
Xét các trường hợp:
-Nếu p = 2, khi đó p + 20 = 22 không phải số nguyên tố, loại
-Nếu p = 3 thì p + 20 = 23 ; p + 40 = 43 ; p + 80 = 83 đều là các số nguyên tố.
-Nếu p > 3 thì p có dạng 3k + 1 hoặc 3k + 2
+) Với p = 3k + 1 thì p + 20 = (3k + 1) + 20 = 3k + 21 = 3k + 3.7 = 3.(k + 7), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại
+) Với p = 3k + 2 thì p + 40 = (3k + 2) + 40 = 3k + 42 = 3k + 3.14 = 3.(k + 14), số này lớn hơn 3 mà chia hết cho 3 nên không phải số nguyên tố, loại.
Vậy suy ra điều phải chứng minh với p = 3
+,Nếu p chia 3 dư 1 => p+20 chia hết cho 3
Mà p+20 > 3 => p+20 là hợp số
+,Nếu p chia 3 dư 2 => p+10 chia hết cho 3
Mà p+10 > 3 => p+10 là hợp số
=> Để p;p+10;p+20 đều là các số nguyên tố thì p chia hết cho 3
=> p=3 ( vì p nguyên tố )
Khi đó : p+26 = 3+26 = 29 là số nguyên tố
=> ĐPCM
k mk nha