K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

Vì P là số nguyên tố lớn hơn 3 => P có dạng 3k + 1 hoặc 3k + 2

 +, Nếu P = 3k + 1 thì P +2 = 3k + 1 + 2

                                           = 3k  + 3 chia hết cho 3

                                               ( là hợp số , trái giả thiết ban đầu ) 

=> P = 3k + 2 

      => P + 7 = 3k + 2 + 7

                     = 3k + 9 chia hết cho 3 

                         ( là hợp số ) => ĐPCM

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 HOẶC 3k+2 (k thuộc N)

Nếu p= 3k+2 thì p +2 là hợp số ,trái với đề .

Vây p có dạng 3k+1 ,khi đó p+7 là hợp số

11 tháng 6 2016

Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!

Câu 1:

p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2

Nếu p=3k+2

=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)

=>p=3k+1

=>p+8=3k+1+8=3k+9 là hợp số (đpcm)

Câu 2:

Ta có: abcabc=abc.1001=abc.7.11.13

Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)

10 tháng 6 2016

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

6 tháng 11 2021

ta có : p + 4 là số lẻ => p là số lẻ

P + 15 = số chẵn chia hết cho 2 => p + 15 là hợp số khi p + 4 là số nguyên tố

16 tháng 5 2016

vì p là số nguyên tố >3 =>p=3k+1 hoặc 3k+2 k là stn                                                                                                                                 nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3=6(k+2) chia hết cho 6 là hợp số loại=>p=3k+2                                                                                             nếu p=3k+2 thì 4p+1=4(3k+2)+1=12k+9=3(4k+3) chia het cho 3 là hợp số (đúng)                                                                                   =>4p+1 là hợp số                                                                                                                                                                                phần tiếp theo tương tự như thế      K TỚ NHÁ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

16 tháng 5 2016

SRTJR

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

Vì $p>3$ và $p$ là snt nên $p$ không chia hết cho $3$. Do đó $p=3k+1$ hoặc $p=3k+2$ với $k$ là số tự nhiên.

Nếu $p=3k+2$ thì $p+4=3k+6=3(k+2)\vdots 3$ và $p+4>3$ nên $p+4$ không là số nguyên tố (trái với đề)

$\Rightarrow p=3k+1$

$\Rightarrow p+8=3k+9=3(k+3)\vdots 3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)

7 tháng 10 2019

Do p là SNT>3 nên:

\(\Rightarrow\)p có dạng: 3k+1 hoặc 3k+2

+) Với p=3k+1 thì ta có:

    p+4=(3k+1)+4=3k+5(thỏa mãn)

    p+8=(3k+1)+8=3k+9(là hợp số; t/mãn)

+) Với p=3k+2 thì ta có:

    p+4=(3k+2)+4=3k+6 (hợp số, ko t/m)

(Vậy nếu p= 3k+1 thì t/m yêu cầu đề bài)

Học tốt nha^^

6 tháng 1 2016

Ta có: p và p+4 là số nguyên tố lớn hơn 3

=> p chia 3 dư 1 hoặc 2

TH1: p=3m+1           (m thuộc N)

=>p+4=3m+5

=>p+8=3m+9=3(m+3) chia hết cho 3

TH2: p =3n+2            (n thuộc N)

=>p+4=3n+6=3(n+2)                     (loại do p+4 là hợp số)

Vậy p và p+4 là SNT thì p+8 là hợp số