Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi người cứ làm từng câu một, vậy tui làm cả 2 câu nhé!
Câu 1:
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+2
=>p+4=3k+2+4=3k+6 (loại vì p+4 cũng là số nguyên tố)
=>p=3k+1
=>p+8=3k+1+8=3k+9 là hợp số (đpcm)
Câu 2:
Ta có: abcabc=abc.1001=abc.7.11.13
Vì 7;11;13 là 3 số nguyên tố nên abcabc chia hết cho ít nhất 3 số nguyên tố (đpcm)
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
vì p là số nguyên tố >3 =>p=3k+1 hoặc 3k+2 k là stn nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3=6(k+2) chia hết cho 6 là hợp số loại=>p=3k+2 nếu p=3k+2 thì 4p+1=4(3k+2)+1=12k+9=3(4k+3) chia het cho 3 là hợp số (đúng) =>4p+1 là hợp số phần tiếp theo tương tự như thế K TỚ NHÁ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Lời giải:
Vì $p>3$ và $p$ là snt nên $p$ không chia hết cho $3$. Do đó $p=3k+1$ hoặc $p=3k+2$ với $k$ là số tự nhiên.
Nếu $p=3k+2$ thì $p+4=3k+6=3(k+2)\vdots 3$ và $p+4>3$ nên $p+4$ không là số nguyên tố (trái với đề)
$\Rightarrow p=3k+1$
$\Rightarrow p+8=3k+9=3(k+3)\vdots 3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
Do p là SNT>3 nên:
\(\Rightarrow\)p có dạng: 3k+1 hoặc 3k+2
+) Với p=3k+1 thì ta có:
p+4=(3k+1)+4=3k+5(thỏa mãn)
p+8=(3k+1)+8=3k+9(là hợp số; t/mãn)
+) Với p=3k+2 thì ta có:
p+4=(3k+2)+4=3k+6 (hợp số, ko t/m)
(Vậy nếu p= 3k+1 thì t/m yêu cầu đề bài)
Học tốt nha^^
Ta có: p và p+4 là số nguyên tố lớn hơn 3
=> p chia 3 dư 1 hoặc 2
TH1: p=3m+1 (m thuộc N)
=>p+4=3m+5
=>p+8=3m+9=3(m+3) chia hết cho 3
TH2: p =3n+2 (n thuộc N)
=>p+4=3n+6=3(n+2) (loại do p+4 là hợp số)
Vậy p và p+4 là SNT thì p+8 là hợp số
Vì P là số nguyên tố lớn hơn 3 => P có dạng 3k + 1 hoặc 3k + 2
+, Nếu P = 3k + 1 thì P +2 = 3k + 1 + 2
= 3k + 3 chia hết cho 3
( là hợp số , trái giả thiết ban đầu )
=> P = 3k + 2
=> P + 7 = 3k + 2 + 7
= 3k + 9 chia hết cho 3
( là hợp số ) => ĐPCM
p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 HOẶC 3k+2 (k thuộc N)
Nếu p= 3k+2 thì p +2 là hợp số ,trái với đề .
Vây p có dạng 3k+1 ,khi đó p+7 là hợp số