K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Để PT có hai nghiệm x1,x2 thì: 

Δ' = (-1)2 - 1.(3m-2) > 0

<=> m <1

Áp dụng Viet, ta có : 

x1 + x2 = -2

x1.x2 = 3m-2

Ta có : 

x12 + x22 = (x1 + x2)2 - 2x1.x2 = (-2)2 - 2(3m-2) = 20

<=> 4 -6m + 4 = 20

<=> m = -2 (thỏa mãn)

Vậy m = -2

8 tháng 6 2018

Đáp án A

Δ=(-4)^2-4(m^2+3m)

=16-4m^2-12m

=-4(m^2+3m-4)

=-4(m+4)(m-1)

Để phươg trình có hai nghiệm thì Δ>=0

=>-4(m+4)(m-1)>=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

x1^2+x2^2=6

=>(x1+x2)^2-2x1x2=6

=>4^2-2(m^2+3m)=6

=>16-2m^2-6m-6=0

=>-2m^2-6m+10=0

=>m^2+3m-5=0

=>\(m=\dfrac{-3\pm\sqrt{29}}{2}\)

NV
9 tháng 1 2023

\(\Delta'=4-m^2-3m\ge0\Rightarrow-4\le m\le1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m^2+3m\end{matrix}\right.\)

\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow4^2-2\left(m^2+3m\right)=6\)

\(\Leftrightarrow m^2+3m-5=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{-3+\sqrt{29}}{2}>1\left(loại\right)\\m=\dfrac{-3-\sqrt{29}}{2}< -4\left(loại\right)\end{matrix}\right.\)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

NV
23 tháng 2 2021

\(\Delta=9-4\left(-m^2+m+2\right)=4m^2-4m+1=\left(2m-1\right)^2\)

Pt có 2 nghiệm pb khi \(m\ne\dfrac{1}{2}\)

Do vai trò của 2 nghiệm là như nhau, giả sử: \(\left\{{}\begin{matrix}x_1=\dfrac{3-\left(2m-1\right)}{2}=2-m\\x_2=\dfrac{3+2m-1}{2}=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\Leftrightarrow\left(2-m\right)^2+\left(m+1\right)^2=5\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

12 tháng 8 2019

Phương trình có hai nghiệm phân biệt x1, x2 ∆ = 52 – 4(3m + 1) > 0 21 – 12m > 0

 ó m < 21/12 

Với m < 21/12 , ta có hệ thức  x 1 + x 2 = 5 x 1 x 2 = 3 m + 1   V i e t '

⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 5 2 − 4 ( 3 m + 1 ) = 21 − 12 m = > | x 1 2 − x 2 2 | = | ( x 1 + x 2 ) ( x 1 − x 2 ) | = | 5 ( x 1 − x 2 ) | = 5 | x 1 − x 2 | = 5 21 − 12 m

Ta có:  | x 1 2 − x 2 2 | = 15 ⇔ 5 21 − 12 m = 15 ⇔ 21 − 12 m = 3 ⇔ 21 − 12 m = 9 ⇔ 12 m = 12 ⇔ m = 1 (t/m)

Vậy m = 1 là giá trị cần tìm

13 tháng 3 2022

phương trình bạn copy thiếu ak bạn ơi? 

13 tháng 3 2022

mình ghi nhầm dấu mình đã sửa lại rồi ạ

 

14 tháng 3 2021

Sửa lại đề:

x2 - (3m - 1)x + 2m2 - m = 0

Ta có: \(\Delta\) = [-(3m - 1)]2 - 4.1.(2m2 - m) = 9m2 - 6m + 1 - 8m2 + 4m = m2 - 2m + 1 = (m - 1)2 \(\ge\) 0

\(\Rightarrow\) x1 = \(\dfrac{3m-1+m-1}{2}=\dfrac{4m-2}{2}=2m-1\)

x2 = \(\dfrac{3m-1-m+1}{2}=\dfrac{2m}{2}=m\)

Ta có: x1 = x22 \(\Leftrightarrow\) 2m - 1 = m2 \(\Leftrightarrow\) m2 - 2m + 1 = 0 \(\Leftrightarrow\) (m - 1)2 = 0

\(\Leftrightarrow\) m - 1 = 0 \(\Leftrightarrow\) m = 1

Vậy m = 1

Chúc bn học tốt!

4 tháng 3 2022

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)

11 tháng 3 2022

Bài 1:

a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\ \Leftrightarrow x^2+1+7=0\\ \Leftrightarrow x^2+8=0\left(vô.lí\right)\)

Thay m=3 vào (1) ta có:

\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)

b, Thay x=4 vào (1) ta có:

\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)

c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)

\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)

11 tháng 3 2022

Bài 2:

a,Thay m=-2 vào (1) ta có:

\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)

\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)

\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)

\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)