K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2021

\(\Delta=9-4\left(-m^2+m+2\right)=4m^2-4m+1=\left(2m-1\right)^2\)

Pt có 2 nghiệm pb khi \(m\ne\dfrac{1}{2}\)

Do vai trò của 2 nghiệm là như nhau, giả sử: \(\left\{{}\begin{matrix}x_1=\dfrac{3-\left(2m-1\right)}{2}=2-m\\x_2=\dfrac{3+2m-1}{2}=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\Leftrightarrow\left(2-m\right)^2+\left(m+1\right)^2=5\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

2 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)

\(< =>4m^2-4m+1-4m^2+1>0\)

\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)

b , bạn dùng vi ét là ra 

21 tháng 5 2016

Hoa Sinh Thcs Gia Thuy

21 tháng 5 2016

a) \(x^2-2mx+2m^2-m=0\)

\(\Delta'=m^2-\left(2m^2-m\right)=-m^2+m\)

Để pt có 2 nghiệm phân biệt thì \(\Delta'=-m^2+m>0\Leftrightarrow0< m< 1\)

Vậy : ...........

b) Bạn xem lại đề bài nhé, mình thấy không ổn.

21 tháng 5 2016

mình bổ sung thêm câu b) ... đạt GTNN

19 tháng 3 2017

Max nhiều =((

a) (Giải cụ thể hơn xíu nè!)

a = 1; b = -10; c = -m + 20

\(\Delta=b^2-4ac\)

     \(=\left(-10\right)^2-4.1.\left(-m+20\right)\)

     \(=100+4m-80\)

     \(=20+4m\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow20+4m>0\Leftrightarrow m>-5\)

b/ Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=-m+20\)

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\Leftrightarrow-m+20< 0\Leftrightarrow m>20\)

c/ Theo Vi-et ta có: \(S=x_1+x_2=-\frac{b}{a}=10\)

                               \(P=-m+20\)

Để pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P>0\\S>0\end{cases}}\Leftrightarrow\hept{\begin{cases}P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}-m+20>0\\10>0\left(hiennhien\right)\end{cases}\Leftrightarrow}-m< 20}\)

18 tháng 3 2017

a) Để phương trình có 2 nghiệm phân biệt thì \(\Delta'>0\)

\(\Delta'=5+m\Leftrightarrow m>-5\)

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)