K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 5 2019

a/ Bạn tự giải

b/ \(\Delta=\left(2n-1\right)^2-4n\left(n-1\right)=4n^2-4n+1-4n^2+4n=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

c/ \(\left\{{}\begin{matrix}x_1=\frac{2n-1-1}{2}=n-1\\x_2=\frac{2n-1+1}{2}=n\end{matrix}\right.\)

\(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\) \(\forall n\)

Thay n = 4 vào pt (1) ta có

\(x^2-6x+5=0\\ ta.có.a+b+c=1-6+5=0\\ Vậy.pt.có.n_o:\\ x_1=1;x_2=\dfrac{c}{a}=5\) 

\(Ta.có:\Delta=b^2-4ac=....=-8n+48\\ Để.pt.\left(1\right).có.1.n_o.phân.biệt.thì.\Delta>0\\ \Leftrightarrow n< 6\) 

Vậy m < 6 thì pt (1) có nghiệm phân biệt \(x_1;x_2\) nên theo Vi ét ta có 

 \(x_1+x_2=\dfrac{-b}{a}=6\\ x_1x_2=\dfrac{c}{a}=2n-3\) 

Ta có  

\(x^2-6x+2n-3=0\\ \Leftrightarrow x^2-5x+2n-4=x-1\) 

Vì x1 x2 là nghiệm pt  \(x^2-6x+2n-3=0\) nên x1 x2 là nghiệm PT \(x^2-5x+2n-4=x-1\)  nên ta có 

\(x_1^2-5x+2x-4=x_1-1.và\\ x_2^2-5x_2+2n-4=x_2-1\\ \Rightarrow\left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=\left(x_1-1\right)\left(x_2-1\right)\) 

\(Mà\\ \left(x_1^2-5x_1+2n-4\right)\left(x_2^2-5x_2+2n-4\right)=-4\\ Nên\left(x_1-1\right)\left(x_2-1\right)=-4\\ \Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=-4\\ \Leftrightarrow2n-3-6+1=-4\\ \Leftrightarrow2n=4\Rightarrow n=2\left(tm\right)\\ ......\left(kl\right)\) 

 

11 tháng 4 2019

1) Với m= 2 PT trở thành  x 2 − 4 x + 3 = 0  

Giải phương trình tìm được các nghiệm  x = 1 ;   x = 3.  

2) Ta có  Δ ' = m 2 − m 2 + 1 = 1 > 0 , ∀ m .  

Do đó, phương trình (1) luôn có hai nghiệm phân biệt.

Từ giả thiết ta có x i 2 − 2 m x i + m 2 − 1 = 0 , i = 1 ; 2. x i 3 − 2 m x i 2 + m 2 x i − 2 = x i x i 2 − 2 m x i + m 2 − 1 + x i − 2 = x i − 2 , i = 1 ; 2.  

Áp dụng định lí Viét cho phương trình (1) ta có  x 1 + x 2 = 2 m ; x 1 . x 2 = m 2 − 1  

Ta có

  x 1 − 2 + x 2 − 2 = 2 m − 4 ; x 1 − 2 x 2 − 2 = x 1 x 2 − 2 x 1 + x 2 + 4 = m 2 − 1 − 4 m + 4 = m 2 − 4 m + 3

Vậy phương trình bậc hai nhận  x 1 3 − 2 m x 1 2 + m 2 x 1 − 2 ,   x 2 3 − 2 m x 2 2 + m 2 x 2 − 2  là nghiệm là x 2 − 2 m − 4 x + m 2 − 4 m + 3 = 0.

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

2 tháng 6 2020

Do \(x_1< x_2\). Do đó: \(x_1=\frac{2n-1-1}{2}=n-1\) và \(x_2=\frac{2n-1+1}{2}=n\)

Ta có \(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

Dấu "=" xảy ra <=> n=2

2 tháng 6 2020

Vì x< x2.Do đó x1=\(\frac{2n-1-1}{2}=n-1\)và x2=\(\frac{2n-1+1}{2}=n\)

Ta có:\(x_{1_{ }}^{2^{ }^{ }}-2x_{2_{ }}+3=\left(n-1\right)^2-2n+3\)

\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)

31 tháng 5 2021

\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)

a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)

         \(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)

         \(< =>4m^2-8m+4+24m+28\)   

          \(< =>4m^2+16m+32\)

          \(< =>\left(2m+4\right)^2+16>0\)     với mọi m

Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m

b) Theo định lí vi ét ta có:

x1+x2\(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)

x1x2\(-6m-7\)

 

            

22 tháng 4 2023

quy đồng

khử mẫu

tách sao cho có tích và tổng

thay x1x2 x1+x2

kết luận

mặt xấu vl . . .oe

a: a=1; b=2m; c=-1

Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt

b: \(x_1^2+x_2^2-x_1x_2=7\)

=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)

=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)

=>4m^2=7-3=4

=>m^2=1

=>m=1 hoặc m=-1

a: Δ=(2m+2)^2-4(m-2)

=4m^2+8m+4-4m+8

=4m^2+4m+12

=(2m+1)^2+11>=11>0

=>Phương trình luôn cóhai nghiệm phân biệt

b: x1^2+2(m+1)x2-5m+2

=x1^2+x2(x1+x2)-4m-m+2

=x1^2+x1x2+x2^2-5m+2

=(x1+x2)^2-2x1x2+x1x2-5m+2

=(2m+2)^2-(m-2)-5m+2

=4m^2+8m+4-m+2-5m+2

=4m^2+2m+8

=4(m^2+1/2m+2)

=4(m^2+2*m*1/4+1/16+31/16)

=4(m+1/4)^2+31/4>=31/4

Dấu = xảy ra khi m=-1/4